Вход

Влияние сероводорода на сократительную активность миокарда правого желудочка крысы

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 562156
Дата создания 2020
Страниц 77
Мы сможем обработать ваш заказ (!) 25 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
3 560руб.
КУПИТЬ

Содержание

СОДЕРЖАНИЕ
стр.
СПИСОК СОКРАЩЕНИЙ 3
ВВЕДЕНИЕ 5
1 ОБЗОР ЛИТЕРАТУРЫ 9
1.1 Роль H2S в межклеточной коммуникации и регуляции 9
деятельности клетки
1.2 Взаимодействие NO, СО и H2S 14
1.3 Физико-химические свойства H2S 15
1.4 Образование и катаболизм H2S 16
1.5 Токсичность и эндогенные концентрации H2S 19
1.6 Физиологические и патофизиологические эффекты и механизмы 20
действия H2S
1.7 Патологические процессы, связанные с метаболизмом H2S
22
в организме
1.8 Роль H2S в сердечно-сосудистой системе 23
1.9 Влияние H2S на сократимость миокарда 26
1.10 Механизмы регуляции сократимости сердечной мышцы 28
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 36
2 МАТЕРИАЛЫ И МЕТОДЫ 36
2.1 Объект и методы исследования 36
2.2 Растворы и фармакологические вещества 38
3 РЕЗУЛЬТАТЫ И ОБСУЖЕНИЕ 40
3.1 Эффекты донора Н2S-NaHS на сократимость изолированной полоски миокарда желудочка 40
3.2 Роль К-каналов в отрицательном инотропном эффекте NaHS 41
в изолированной полоске миокарда
3.3 Роль NO в эффектах H2S на сократимость миокарда 43
3.4 Обсуждение результатов 45
ВЫВОДЫ 47
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 48

Фрагмент работы для ознакомления

ВВЕДЕНИЕ

Последние достижения в физиологии в основном связаны с расшифровкой механизмов межклеточных взаимодействий и регуляции деятельности клетки. Кроме исследования классических посредников прошлый век ознаменовался открытием физиологической роли некоторых общеизвестных газообразных веществ. Оказалось, что сигнальную функцию в межклеточной коммуникации и во внутриклеточной регуляции выполняют известные своими токсичными эффектами газы: сероводород (H2S), монооксид углерода (СO) и оксид азота (NO) [Wang, 2004].
Существует ряд параметров, которым должен соответствовать потенциальный газообразный посредник: его молекулы должны существовать в виде газа и беспрепятственно проникать сквозь мембраны клеток, он должен иметь источник эндогенного синтеза и ферменты синтеза, должен участвовать в регуляции физиологических функций, иметь специфические клеточные и молекулярные мишени [Wang, 2002]. Все известные и исследованные на данное время газотрансмиттеры соответствуют этим параметрам.
...

1.1 Роль H2S в межклеточной коммуникации и регуляции деятельности клетки Хотя многие физиологические и патофизиологические эффекты H2S
уже известны, но многое все еще остается неизученным. Молекулярные мишени H2S также до конца не изучены, но скорее всего, к ним относятся внутриклеточные белки, ферменты, транскрипционные факторы, а также множество ионных каналов. Предполагается, что активные участки, через которые оказываются биологические эффекты H2S, находятся внутри клетки.
Показано, что после ишемии/реперфузии в митохондриях (МТХ) H2S действует как фактор защиты клеток через ингибирование активности цитохром-оксидазы. Также H2S действует как нейропротектор за счет увеличения производства глутатиона (GSH) [Kimura et al., 2010], модуляции уровня ЦГЛ и снабжения аденозинтрифосфата (АТФ) в условиях гипоксии. Выявлено участие H2S и в регуляции апоптоза [Yuan et al., 2011].
...

1.2 Взаимодействие NO, СО и H2S

Многочисленные исследования свидетельствуют о множественных эффектах газотрансмиттеров. В отличие от других фармакологических агентов H2S активирует многие сигнальные пути одновременно. По- видимому, H2S обладает всеми положительными влияниями NO на клетки, без способности образовывать токсичные метаболиты. Более того, H2S нейтрализует ONOO2.
Впервые о возможном взаимодействии NO и H2S предположили, когда выяснилось, что H2S в низких концентрациях еще больше усиливает вазодилятацию, вызванную предапликацией нитропруссида натрия - донора NO [Hosoki, Matsuki, Kimura, 1997]. Известно, что H2S стимулирует образование NO в эндотелии сосудов [Zhao, Wang, 2002]. Нитропруссид натрия усиливает синтез H2S из цистеина [Zhao et al., 2001] и увеличивает экспрессию ЦГЛ в гладких мышцах сосудов [Zhao et al., 2001; Zhao et al., 2002].
...

1.3 Физико-химические свойства H2S

Давно известно, что H2S является бесцветным газом с запахом тухлых яиц. Он представляет собой молекулу небольшого размера, которая может находиться в газообразном, жидком и твердом состоянии. При температуре 25-27С° в воде, его концентрация составляет ~0,11 М. В водных растворах при pH 7,4 около 1/3 H2S не диссоциирует, а 2/3 подвергается диссоциации до Н+ и HS- (гидросульфид анион), который впоследствии может разложиться до S2- и H+:
H2S↔H+ + HS-↔2H+ + S2-
Реакция разложения до серы и протона происходит только при высоком рН, поэтому концентрация S2- in vivo незначительна [Abe, Kimura, 1996; Lowicka, Beltowski, 2007]. Для H2S характерно свойство сильного восстановителя. Химическая активность H2S имеет большое значение для сродства газа с гемсодержащими и другими белками организма [Pietri, Leon, 2009]. В реакции с окислителями молекула H2S теряет 2, 6 и 8 электронов.

1.
...

1.4 Образование и катаболизм H2S

Идея возможности синтеза H2S естественным путем была предложена только в конце прошлого века.
Образуется H2S эндогенно при участии либо цитозольных ферментов цистатионин-β-синтаза (ЦБС), цистатионин-γ-лиаза (ЦГЛ), либо митохондриальных 3-меркаптопируват сульфатрансферазы (3-МСТ) и цистеин аминотрансферазы (ЦАТ) (рисунок 1). Так как это сильно диффундирующий газ, то образовавшийся H2S либо сразу же вступает во взаимодействие, либо же быстро катаболизируется. В последних исследованиях была показана специфичность распределения ферментов синтеза H2S; например, экспрессия ЦБС выражена в мозге, печени, почках, подвздошной кишке, матке, плаценте, панкреатических островках, к тому же ЦБС является основным ферментом синтеза H2S в центральной нервной системе [Jiang et al., 2005].

Рисунок 1 - Схема образование эндогенного сероводорода.
...

1.5 Токсичность и эндогенные концентрации H2S

Входными воротами для H2S служат легкие и кожа. К его основным токсическим эффектам на организм человека относят прямое повреждение слизистых оболочек глаз и верхних дыхательных путей за счет местного раздражающего действия, и системную интоксикацию. Газ способен угнетать деятельность дыхательного и сосудодвигательного центров, резко нарушать микроциркуляцию в тканях, вызывая патологические изменения в различных органах и системах, в том числе и иммунной [Polunin, Asfandiyarov, Trizna, 1999].
Во многих исследованиях проводились попытки измерения уровня H2S в тканях и биологических жидкостях. При этом использовался наиболее распространенный метод анализа - связывание H2S с металлом (обычно c цинком) с последующим окислением, далее реакция с красителем, N,N- диметил - p - фенилендиамином (DMPD), с образованием метиленового синего, который далее измеряется спектрофотометрическим методом.
...

1.6 Физиологические и патофизиологические эффекты и механизмы действия H2S

На сегодняшний день проведено множество исследований, направленных на изучение воздействия H2S на отдельные системы организма. И наибольшее внимание привлекают его эффекты на сердечно- сосудистую систему и на процессы воспаления. Были продемонстрированы также влияния эндогенного H2S на периферическую и центральную нервную систему, влияние на оценку боли и нейродегенерации, контроль над ЖКТ, мочеполовой и эндокринной системами [Kimura, 2010; Leffler et al., 2008; Li, Hsu, Moore, 2009; Olson, 2008; Qu et al., 2008].
В центральной нервной системе сероводород функционирует как нейромодулятор, но может выполнять и протекторную функцию при
оксидативном стрессе. Установлено благотворное влияние доноров сероводорода при геморрагическом шоке, эндотоксемии, бактериальном сепсисе и асептическом воспалении [Lowicka, Beltowski, 2007].
...

1.7 Патологические процессы, связанные с метаболизмом H2S в организме

Принимая участие во многих физиологических реакциях, H2S, равно как и другие газомедиаторы, играет очень важную роль. Основной патогенетический механизм повреждающего воздействия сероводорода на организм - необратимое ингибирование железосодержащих цитохромов, связывание с железом в их молекулах, и, как следствие-нарушение усвоения тканями кислорода с развитием тканевой гипоксии [Polunin, Asfandiyarov, Trizna, 1999]. Состояние тканевой гипоксии стимулирует выделение провоспалительных цитокинов, являющихся физиологическими активаторами апоптоза [Pashkov, Shishlo, Prokhorov, 2008]. Повышение активности р53 - фактора, запускающего апоптоз, связано с вынужденными радикальными мерами, к которым организму приходится прибегать при серьезных стрессах, интоксикациях, облучении, инфекциях и воспалении [Ярилин, 2001].
...

1.8 Роль H2S в сердечно-сосудистой системе

В ряде исследований было выявлено, что H2S расширяет кровеносные сосуды у крыс, как in vitro, так и in vivo. Было выявлено, что данный эффект опосредован активацией K(ATФ) - каналов гладких мышц сосудов [Zhao et al., 2001; Hosoki, Matsuki, Kimura, 1997]. Сосудорасширяющие эффекты H2S были показаны и на изолированных сосудах млекопитающих (аорта, желудочная артерия, воротная вена) [Ali et al., 2006; Hosoki, Matsuki, Kimura, 1997; Kubo, Kajiwara, Kawabata, 2008; Webb et al., 2008; Zhao et al., 2001]. В целом, острое [Hosoki, Matsuki, Kimura, 1997; Zhao et al., 2001] и хроническое введение NaHS [Cai et al., 2007] снижает артериальное давление (АД), так же как и введение других доноров H2S, таких как ADT-OH, S-диклофенак [Lim et al., 2007] и GYY4137 [Lim et al., 2008]. В различных исследованиях было показано, что концентрация NaHS, необходимая для расширения кровеносных сосудов in vitro, должна быть высокой.
...

1.9 Влияние H2S на сократимость миокарда

Показано что Н2S продуцируется в миокардиальной ткани крысы со скоростью 19 нM/г в мин, это указывает на то, что сердце является важным источником эндогенного газа в организме. Уровень мРНК ЦГЛ в миокарде на 24% выше, чем в грудной аорте и на 14% ниже, чем в ткани мозга [Geng et al., 2004].
Донор Н2S, NaHS, в концентрации 10-6-10-4 М/л вызывает отрицательный инотропный эффект в модели изолированного перфузируемого сердца крысы, не оказывая влияния на частоту сердечных сокращений (ЧСС) и не оказывая эффекта на скорость коронарного тока. Эти эффекты частично блокировались в присутствии глибенкламида, что позволило предположить, что К(АТФ) - каналы являются одними из мишеней действия H2S [Geng et., al 2004]. Активация К (АТФ) - каналов приводит к укорочению потенциала действия (ПД), уменьшению входа Са2+ и снижению силы сокращения миокарда [Cole, McPherson, Sontag, 1991].
...

1.10 Механизмы регуляции сократимости сердечной мышцы

В живых организмах гемодинамическая работа сердца регулируется, в первую очередь, изменениями сократимости сердечной мышцы-миокарда, которые параллельно сопровождаются изменениями скорости сокращения.
Электромеханическое сопряжение в сердце – это процесс, включающий все этапы от электрического возбуждения миоцитов до сокращения сердца. Сократительная активность сердца во многом зависит от электрических процессов на мембране кардиомиоцитов [Bers, 2001; Fozzard, 1991], где ПД формируется за счет большого количества разнообразных каналов.
Деполяризация мембраны активирует потенциал-активируемые Са2+ - каналы L-типа, вход Са2+ через которые во время плато является основным триггером для сопряжения процесса возбуждения-сокращения в рабочем миокарде [Vinogradova, Bogdanov, Lakatta, 2002].
...

2.1 Объект и методы исследования

Эксперименты по исследованию сократимости изолированных полосок желудочкового миокарда проводились на самцах беспородных крыс Rattus norvegicus в возрасте от 90 до 120 дней. Животных содержали при стандартных условиях, при свободном доступе к еде и воде.
Эксперименты по определению сократимости миокарда правого желудочка проводились в изометрических условиях на установке PowerLab (Biopac, США) (рисунок 2), с датчиком силы 0-50 г. (Biopac, США).
Животных усыпляли ингаляционным наркозом при помощи изофлюрана. Приготовленное к эксперименту животное фиксировали на препаровальном столе, затем вскрывали. Аккуратно извлекали и промывали сердце несколько раз через сосуды физиологическим раствором при помощи шприца. Затем сердце помещали в специальную ванночку со стимуляцией, в которую предварительно наливали физиологический раствор.
...

2.2 Растворы и фармакологические вещества

Для эксперимента на изолированном препарате миокарда сердца использовали модифицированный физиологический раствор Кребса, для теплокровных животных. Физиологический раствор имел следующий состав (в мМ): NaCI – 137,0; KCI – 5,0; MgSO4 – 1,0; NaHCO3 – 11,0; CaCI2 – 2,2;
глюкоза – 11,0; аскорбиновая кислота – 0,3. Для поддержания pH в пределах 7,2-7,4 в раствор добавляли основной буфер NaH2PO4 – 1,0 мМ (все препараты Sigma), раствор продували карбогеном (95% O2–5% CO2) в течение 20 мин. Определение значения рН проводили с помощью рН-метра (Mettler Toledo, Швейцария).
В экспериментах использовали фармакологические препараты фирмы Sigma (таблица 1). Все вещества хранились согласно инструкции.
В качестве донора H2S использовали NaHS, который широко используется в научных исследованиях [Abe, Kimura, 1996], так как в водных растворах происходит его разложение до иона натрия (Na+) и гидросульфидного аниона (HS-).
...

3.2 Роль К-каналов в отрицательном инотропном эффекте NaHS в изолированной полоске миокарда

В ряде исследований показана роль различных К-каналов в эффектах сероводорода на сердце. Для блокирования К-каналов использовали неселективный ингибитор тетраэтиламмоний хлористый (ТЭА), который наиболее эффективно увеличивал силу напряжения полоски миокарда в концентрации 15 мМ, при которой сила напряжения составила 132,14 ± 6,68% (n = 10; р < 0,001) от контрольного уровня (рисунок 4). На фоне ингибирования К-каналов ТЭА отрицательный инотропный эффект NaHS сохранялся и составил 36,81 ± 6,41% (n = 10; р < 0,01) (рисунок 4 ).
Одним из известных механизмов действия H2S в гладких мышцах сосудов и кардиомиоцитах крысы является активация К(АТФ)-каналов [Cheng, 2004, Zhao, 2001].
Для ингибирования К(АТФ)-каналов использовали блокатор глибенкламид в концентрации 50 мкМ.
...

3.3 Роль NO в эффектах H2S на сократимость миокарда

Известно, что оксид азота является важным регулятором деятельности ССС. Исходя из данных о взаимодействии NO и H2S в регуляции сосудистого
тонуса, нами был проведен анализ эффектов донора H2S в условиях ингибирования синтеза NO и повышения его эндогенной концентрации.
Блокатор NO-синтаз L-NAME в концентрации 100мкМ приводил к достоверно значимому повышению силы напряжения полоски миокарда правого желудочка до 122,42± 3,1% (n = 7; р < 0,01) относительно контроля. При условии блокирования синтеза NO донор H2S 200мкМ достоверно понижал силу напряжения миокарда до 31,54± 4,6% (n = 8; р < 0,01), эффект был сопоставим с контрольными значениями (рисунок 6 ).

150

125

100

75

50

25

0

Рисунок 6 - Роль системы оксида азота в эффектах донора сероводорода- гидросульфида натрия.
...

3.4 Обсуждение результатов

Полученные нами данные свидетельствуют, что экзогенный H2S в зависимости от концентрации может оказывать как положительное (в низких концентрациях), так и отрицательное инотропное действие (в высоких концентрациях). Подобное действие наблюдалось и в гладкомышечных клетках сосудов, где низкие дозы H2S вызывали вазоконстрикцию, что, по-видимому, опосредуется изменением уровня эндотелиального NO. Так, при смешивании NaHS и NO показано угнетение сосудорасширяющих эффектов последнего in vitro и in vivo [Ali, 2006]. Угнетение силы напряжения полосок желудочкового миокарда крысы было также показано в исследованиях на миокарде холоднокровных животных [Ситдикова, Хаертдинов, Зефиров, 2011].
Известно, что целый ряд К-токов участвует в реполяризации мембраны кардиомиоцитов в различные фазы ПД [Nerbonne, 2003]. На фоне блокирования К-каналов, при помощи неселективного блокатора ТЭА, эффекты донора H2S полностью сохранялись.
...

Список литературы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1. Абрамов, А.А. Изучение кардиотропных эффектов сероводорода (H2S) при перфузии изолированного сердца крысы [Текст] / А.А. Абрамов, Д.В. Абрамочкин, В.С. Кузьмин, А.А. Абрамов, Д.В. Абрамочкин, В.С. Кузьмин // Bioscience Blog.-2010.
2. Герасимова, Е.В. Сероводород как эндогенный модулятор освобождения медиатора в нервно-мышечном синапсе лягушки [Текст]
/ Е.В. Герасимова, Г.Ф. Ситдикова, А.Л. Зефиров // Нейрохимия.- 2008, Т.- 25.- № 1.- С. 138-145.
3. Розенштраух, Л.В. Эффективность и безопасность нибентана при медикаментозной кардиоверсии у больных с персистирующей формой фибрилляции и трепетания предсердий: роль ограничения доз препарата и применения магния сульфата [Текст] / Л.В. Розенштраух // Кардиология.- 2007.- Т. 47.- № 3.- С. 48-55.
4. Ситдикова, Г.Ф. Газообразные посредники в нервной системе [Текст] / Г.Ф. Ситдикова, А.Л. Зефиров // Российский физиологический журнал им. И.М. Сеченова.– Т. 97.- №7.– 2006.– С. 872-882.
5. Ситдикова, Г.Ф. Роль циклических нуклеотидов в эффектах сероводорода на освобождение медиатора в нервно-мышечном синапсе лягушки [Текст] / Г.Ф. Ситдикова, Е.В. Герасимова, Н.Н. Хаертдинов, А.Л. Зефиров // Нейрохимия.- 2009.- Т. 26.- № 4.- С. 1-7.
6. Ситдикова, Г.Ф. Сероводород: от канализаций Парижа к сигнальной
молекуле [Текст] / Г.Ф. Ситдикова, А.Л.Зефиров // Природа.- 2010.- № 9.- С. 29-37.
7. Ситдикова, Г.Ф. Влияние сероводорода на процессы экзо- и эндоцитоза
синаптических везикул в двигательном нервном окончании лягушки [Текст]
/ Г.Ф. Ситдикова, А.В. Яковлев, Ю.Г. Одношивкина, А.Л. Зефиров // Нейрохимия.- 2011.- Т. 28.- № 4.- С. 1–7.

8. Ситдикова, Г.Ф. [Текст] /Ситдикова Г.Ф., Хаертдинов Н.Н., Зефиров А.Л.// Бюлл. Эксп. Биол. Мед. -2011. Т. 151. № 2. C.124-8.
9. Ярилин, А.А. Апоптоз: природа феномена и его роль в норме и при патологии [Текст] / Ярилин А.А., Мороз Б.Б., редактор // Актуальные проблемы патофизиологии. М.: Медицина; 2001. С. 13-56.
10. Abe, K. The possible role of hydrogen sulfide as an endogenous neuromodulator [Text] / K. Abe, H. Kimura // J. Neurosci.-1996.-V.- 16.- P.1066–1071.
11. Abel, T. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory [Text] / Abel T., Nguyen P.V., Barad M. et al. // Cell. 1997. Vol. 88. P. 615–626.
12. Abi-Gerges, N. Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat [Text] / N. Abi-Gerges, B. Tavernier, A. Mebazaa, V. Faivre, X. Paqueron, D. Payen, R. Fischmeister, P.-F. Méry// American Journal of Respiratory and Critical Care Medicine.- 1999.-V. 160.-P.1196–1204.
13. Aggarwal, B.B. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? [Text] / Aggarwal B.B., Kunnumakkara A.B., Harikumar K.B. ,Gupta S.R. , Tharakan S.T. , et al. //Ann. NY Acad. Sci. - 2009. 1171:59–76.
14. Aguilar-Bryan, L. Towards understanding the assembly and structure of KATP channels [Text] / L. Aguilar-Bryan, J.P. Clement, G. González, K. Kunjilwar, A. Babenko, J. Bryan // Physiol Rev.- 1998.- V. 78.- P. 227–245.
15. Ali, M.Y. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? [Text] / Ali M.Y., Ping C.Y. , Mok
Y.Y.P. , Ling L. , Whiteman M. , et al. //Br. J. Pharmacol. - 2006. 149:625– 34.

16. Ashley, C.C. Ca2+ and activationmechanisms in skeletal muscle [Text] /
C.C. Ashley, I.P. Mulligan, T.J. Lea // Q Rev Biophys.- 1991.-V. 24.-P. 1– 73.
17. Babenko, A.P. A view of sur / KIR6.X, KATP channels [Text] / A.P. Babenko, L. Aguilar-Bryan, J. Bryan // Annu Rev Physiol.- 1998.- V. 60.- P. 667-687.
18. Balligand, J. L. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues [Text] / J. L. Balligand, O. Feron, C. Dessy // Physiol. Rev.- 2009.-V. 89.-№. 2.-P. 481-534.
19. Bassani, J.W.M. Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes [Text] / J.W.M. Bassani, W. Yuan, D.M. Bers, S.R. Fractional // Am. J. Physiol.- 1995.- V. 268.- P. 1313-1319.
20. Bannenberg, G.L. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide [Text] / Bannenberg G.L., Vieira H.L. 2009.
//Expert Opin. Ther. Pat. 19:663–82.
21. Bers, D.M. Cardiac excitation–contraction coupling [Text] / D.M. Bers // Nature.- Calcium and Cardiac Rhythms Physiological and Pathophysiologica.- 2002.- V. 415.- P.198-205.
22. Bers, D.M. Digitalis and Na/Ca exchange: old dog learns new mitochondrial tricks [Text] / D.M. Bers // Journal of molecular and cellular cardiology.- 2010.- P. 49.- I. 5.- P. 713-714.
23. Benavides, G.A. Hydrogen sulfide mediates the vasoactivity of garlic [Text]
/ Benavides G.A., Squadrito G.L., Mills R.W., Patel H.D. , Isbell T. S. , et al.// - 2007. Proc. Natl. Acad. Sci. USA 104:17977–82.
24. Bhatia, M. Role of hydrogen sulfide in acute pancreatitis and associated lung injury [Text] / Bhatia M., Wong F.L., Fu D., Lau H.Y., Moochhala S.M., Moore P.K. //FASEB J. - 2005. 19:623–25.

25. Bian, J.S. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes [Text] / Bian J.S., Yong Q.C., Pan T.T., Feng Z.N., Ali M.Y., Zhou S. & Moore P.K.// J Pharmacol Exp Ther, - 2006. 316, 670–678.
26. Bokoch, M.P. Ligand-specific regulation of the extracellular surface of a G- protein-coupled receptor [Text] / M.P. Bokoch, Y. Zou, S.G. Rasmussen,
C.W. Liu, R. Nygaard, D.M. Rosenbaum, J.J. Fung, H.J. Choi, F.S. Thian,
T.S. Kobilka, J.D. Puglisi, W.I. Weis, L. Pardo, R.S. Prosser, L. Mueller, B.K. Kobilka // Nature.- 2010.- V. 463.- P. 108-112.
27. Brandes, R. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle [Text] / R. Brandes, D.M. Bers // Circ. Res.- 1997.- V. 80.-P. 82-87.
28. Brittsan, R. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells [Text] / G.F. Sitdikova, T.M. Weiger, A. Hermann // Pflugers Arch.- 2010.- V. 459.- I. 3.- P. 389-397.
29. Bucci, M. Hydrogen sulphide is involved in testosterone vascular effect [Text] / Bucci M., Mirone V., Di Lorenzo A. et al. // Eur. Urol. - 2009. Vol. 56. P. 378–383.
30. Budde, M.W. Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel–Lindau tumor suppressor-1 in C. elegans [Text] / Budde M.W., Roth M.B. // Mol. Biol. Cell, - 2010. 21:212– 17.
31. Calvert, J.W.Hydrogen sulfide mediates cardioprotection through Nrf2 signalingм [Text] / Calvert J.W., Jha S., Gundewar S., Elrod J.W., Ramachandran A., et al. //Circ. Res. - 2009. 105:365–74.
32. Cai, W.J. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation [Text] / Cai W.J., Wang M.J., Moore P.K., Jin H.M., Yao T., Zhu Y.C.// Cardiovasc. Res. - 2007. 76:29–34.

33. Cai, W.J. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21[Text] / Cai W.J., Wang M.J., Ju L.H., Wang C., Zhu Y.C. // Cell Biol. Int. -2010. 34(6):565–72.
34. Cannell, M.B. The control of calcium release in heart muscle [Text] / M.B. Cannell, H. Cheng, W.J. Lederer // Science.- 1995.- V. 268.- P. 1045-1049.
35. Chang, L. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats [Text] / Chang L., Geng B., Yu F., Zhao J., Jiang H., et al. // Amino Acids, -2008. 34:573–85.
36. Cherezov, V. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor [Text] / V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G. Rasmussen, F.S. Thian, T.S. Kobilka, H.J. Choi, P. Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens // Science.- 2007.- V. 318.- P. 1253-1254.
1. Chen, X. Rab27b localizes to ZG membrane and regulates acinar secretion [Text] / X. Chen, C. Li, T. Izumi, S.A. Ernst, P.C. Andrews, J.A. Williams // Biochem. Biophys. Res. Commun.- 2004.- V. 323.- P. 1156-1161.
37. Cheng, Y.Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats [Text] / Cheng Y., Ndisang J.F., Tang G., Cao K., Wang R. //-2004. Am. J.
38. Chunyu, Z. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats [Text] / Chunyu Z., Du J., Dingfang B., Hui Y., Xiuying T., Tang C. // Biochem. Biophys. Res. Commun. - 2003. 302:810–16.
39. Coetzee, W.A. Molecular diversity of K+ channels [Text] / W.A. Coetzee, Y. Amarillo, J. Chiu// Ann N Y Acad Sci.- 1999.- V. 868.- P. 233–285.
40. Cole, W.C. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage [Text] / W.C. Cole, C.D. McPherson, D. Sontag.// Circ Res. - 1991.- V. 69.- №3.- P. 571-581.

41. Cooper, C.E. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance [Text] / Cooper C.E., Brown G.C.// J. Bioenerg. Biomembr. -2008. 40:533–39.
42. Coronado, R. Structure and function of ryanodine receptors [Text] / R. Coronado, J. Morrissette, M. Sukhareva, D.M. Vaughan // Am. J. Physiol.- 1994.- V. 266.- P. 1485–1504.
43. Damy, T. Increased neuronal nitric oxide synthasederived NO production in the failing human heart [Text] / T. Damy, P. Ratajczak, A.M. Shah, E. Camors, I. Marty, G. Hasenfuss // Lancet.- 2004.- V. 363.- P.- 1365-1367.
44. Dawe, G.S. Hydrogen sulphide in the hypothalamus causes an ATP sensitive K + channel-dependent decrease in blood pressure in freelymoving rats [Text] / Dawe G.S., Han S.P., Bian J.S., Moore P.K.// - 2008. Neuroscience 152:169–77.
45. Dhaese, I. Mechanisms of action of hydrogen sulfide in relaxation of mouse distal colonic smooth muscle [Text] / Dhaese I., Van Colen I., Lefebvre R.A.// -2010. Eur. J. Pharmacol. 628:179–86.
46. Dhalla, N.S. Status of myocardial antioxidants in ischemia-reperfusion injury [Text] / Dhalla N.S., Elmoselhi A. B., Hata T., and Makino N.// Cardiovascular Research, - 2000. vol. 47, no. 3, pp. 446–456.
47. Di-Pilato, L.M. FRETting mice shed light on cardiac adrenergic signaling [Text] / L.M. DiPilato, J. Zhang // Circ. Res.- 2006.- V. 99.- №10.- P. 1021- 1023.
48. Distrutti, E. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels [Text] / Distrutti E., Sediari L., Mencarelli A., Renga B., Orlandi S., et al.// -2006. J. Pharmacol. Exp. Ther. 316:325–35.
49. Dombkowski, R.A. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout [Text] / Dombkowski R.A., Russell

M.J., Olson K.R. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. Vol. 286. P. R678–R685.
50. Dombkowski, R.A., Vertebrate phylogeny of hydrogen sulfide vasoactivity [Text] / Dombkowski R.A., Russell M.J., Schulman A.A. et al. // Am. J. Physiol. Regul. Integ.r Comp. Physiol. - 2005. Vol. 288. P. R243–R252.
51. Du, J. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells [Text] / Du J., Hui Y., Cheung Y., Bin G., Jiang H., et al.//- 2004. Heart Vessels 19:75–80.
52. Egger, M. Paradoxical block of the Na+-Ca2+ exchanger by extracellular protons in guinea-pig ventricular myocytes [Text] / M. Egger, E. Niggli // J. Physiol.- 2000.- V. 523.- P. 353-366.
53. Elsey, D.J. Regulation of cardiovascular cell function by hydrogen sulfide (H2S) [Text] / Elsey D.J., Fowkes R.C., Baxter G.F.//Cell Biochem. Funct. - 2010. 28:95–106.
54. Elrod, J.W. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function [Text] / Elrod J.W., Calvert J.W., Morrison J., Doeller J.E., Kraus D.W., et al. //Proc. Natl. Acad. Sci. - 2007. USA 104:15560–65.
55. d’Emmanuele di Villa Bianca, R. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation [Text] / d’Emmanuele di Villa Bianca R., Sorrentino R., Maffia P., Mirone V., Imbimbo C., et al. //
-2009. Proc. Natl. Acad. Sci. USA 106:4513–18.
56. Feron, O. Muscarinic cholinergic signaling in cardiac myocytes: dynamic targeting of M2AchR to sarcolemmal caveolae and eNOS activation [Text] /
O. Feron, X. Han, R.A. Kelly // Life Sciences.- 1999.- V. 64.- P. 471—477. 57.Figueroa, X.F. NO production and eNOS phosphorylation induced by
epinephrine through the activation of beta-adrenoceptors [Text] / X.F. Figueroa, I. Poblete, R. Fernández, C. Pedemonte, V. Cortés, J.P. Huidobro-

Toro // Am. J. Physiol. Heart Circ. Physiol.- 2009.- V. 297.- №1.- P. 134– 143.
58. Fiorucci, S. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis [Text] / Fiorucci S., Antonelli E., Mencarelli A., Orlandi S., Renga B., et al.// Hepatology -2005. 42:539–48.
59. Fiorucci, S. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs [Text] / Fiorucci S., Antonelli E., Distrutti E., Rizzo G., Mencarelli A., et al.// Gastroenterology - 2005. 129:1210–24.
60. Fiorucci, S. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver [Text] / Fiorucci S., Distrutti E., Cirino G., Wallace J.L. // Gastroenterology. -2006. Vol. 131. P. 259–271.
61. Fiorucci, S. Enhanced activity of a hydrogen sulphide–releasing derivative of mesalamine (ATB-429) in a mouse model of colitis [Text] / Fiorucci S., Orlandi S., Mencarelli A., Caliendo G., Santagada V., et al. // Br. J. Pharmacol.- 2007. 150:996–1002.
62. Fischmeister, R. The mechanism of action of norepinephrine and acetylcholine on the heart: role of protein phosphorylation [Text] / R. Fischmeister, H.C. Hartzel. // In Neurobiology of Acetylcholine.- 1987.
63. Fozzard, H.A. Excitation-contraction coupling in the heart [Text] / H.A. Fozzard // Adv Exp Med Biol.- 1991.- V. 308.- P. 135–142.
64. Franzini-Armstrong C. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions [Text] / C. Franzini-Armstrong, F. Protasi // Physiol. Rev.- 1997.- V. 3.- P. 699–729.
65. Fulton, D. Venema Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83 [Text] / D. Fulton, J.E. Church, L. Ruan, C. Li, S.G. Sood, B.E. Kemp, I.G. Jennings, R.C. // J. Biol. Chem.- 2005.- V. 280.- № 43.- P. 35943–35952.

66. Fujioka, Y. Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes [Text] / Y. Fujioka, M. Komeda, S. Matsuoka // J. Physiol.- 2000.- V. 523.- P. 339-351.
67. Furne, J. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa [Text] /Furne J., Springfield J., Koenig T., DeMaster E., and Levitt M. D.// Biochemical Pharmacology -2001., vol. 62, no. 2, pp. 255– 259.
68. Furne, J. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values [Text] / Furne J., Saeed A., Levitt M.D. // Am. J. Physiol. Regul. Integr. Comp. Physiol.-2008. 295:R1479–85.
69. Gadalla, M.M. Hydrogen sulfide as a gasotransmitter [Text] / Gadalla M.M., Snyder S.H.// J. Neurochem. -2010. 113(1):14–26.
70. Geng, B. H2S generated by heart in rat and its effects on cardiac function [Text] / Geng B., Yang J., Qi Y., Zhao J., Pang Y., et al.// Biochem. Biophys. Res. Commun. -2004. 313:362–68.
71. Glass, D.C. A review of the health effects of hydrogen sulphide exposure [Text] / Glass D.C. // Ann. Occup. Hyg. -1990. 34:323–27.
72. Gobbi, G. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling [Text] / Gobbi G., Ricci F., Malinverno C., Carubbi C., Pambianco M., et al.// Lab. Investig. -2009. 89:994–1006.
2. Grover, G.J. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology [Text] / G.J. Grover, K.D. Garlid // J Mol Cell Cardiol.- 2000.- V. 32.- 677– 695.
73. Guzman, M.A. Cystathionine β-synthase is essential for female reproductive function [Text] / Guzman M.A., Navarro M.A., Carnicer R. et al. // Human Molecular Genetics.- 2006. Vol. 15. P. 3168–3176.

74. Hall, R.A. The beta2-adrenergic receptor interacts with the Na+/H+- exchanger regulatory factor to control Na+/H+ exchange [Text] / R.A. Hall,
R.T. Premont, C.W. Chow, J.T. Blitzer, J.A. Pitcher, A. Claing, R.H. Stoffel,
L.S. Barak, S. Shenolikar, E.J. Weinman, S. Grinstein, R.J. Lefkowitz // Nature.- 1998.- V. 392.- №6676.- P. 626-630.
75. Haase, H. Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca2+ channel [Text] / H. Haase // Cardiovasc. Res.- 2007.- V. 73.-
№1.- P. 19-25
76. Hall, C.N. What is the real physiological NO concentration in vivo? [Text]
/ Hall C.N., Garthwaite J.// Nitric Oxide - 2009. 21:92–103.
77. Han, X. Characteristics of nitric oxide -mediated cholinergic modulation of calcium current in rabbit sino-atrial node [Text] / X. Han, L. Kobzik, D. Severson, Y. Shimoni // J. Phusiology 1998.- V. 509.- № 3.- P. 741-754.
78. Hartzell, H.C. [Text] / H.C. Hartzell, D. Budnitz // Biophys. J.- 1991.- V.
59.- P. 551.
79. Hosoki, R. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide [Text] / Hosoki R., Matsuki N., Kimura H. // Biochem. Biophys. Res. Commun. -1997. 237:527–31.
80. Hu, L.F. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase inmicroglia [Text] / Hu L.F., Wong P.T., Moore P.K., Bian J.S.// J. Neurochem.-2007. 100:1121–28.
81. Hughes, M.N. Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review [Text] / Hughes M.N., Centelles M.N., Moore K.P.// Free Radic. Biol. Med. -2009. 47:1346–53.
82. Ishigami, M. A source of hydrogen sulfide and a mechanism of its release in the brain [Text] / Ishigami M., Hiraki K., Umemura K., Ogasawara Y., Ishii K, Kimura H. // Antioxid. Redox Signal.-2009. 11:205–14.

83. Webb, G. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells [Text] / Webb, G , Jang G., Wu L., Liang W., Wang R. // Mol. Pharmacol. -2005. № 68. P. 1757—1764.
84. Jeong, S.O. Hydrogen sulfide potentiates interleukin- 1β-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells [Text] / Jeong S.O., Pae H.O., Oh G.S., Jeong G.S., Lee B.S., et al.// Biochem. Biophys. Res. Commun. - 2006. 345:938–44.
85. Jeney, V. Suppression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S) [Text] / Jeney V., Komґodi E., Nagy E., Zarjou A., Vercellotti G.M., et al. // Free Radic. Biol. Med. -2009. 46:616–23.
86. Jiang, B. Molecular mechanism for H2S-induced activation of KATP channels [Text] / Jiang B., Tang G., Cao K., Wu L., Wang R.// Antioxid. Redox Signal. -2010. 12:1167–78.
87. Jiang, H.L. Changes of the new gaseous transmitter H2S in patients with coronary heart disease [Text] / Jiang H.L., Wu H.C., Li Z.-L, Geng B. and Tang C.-S. // Academic Journal of the First Medical College of PLA. - 2005. vol. 25, no. 8, pp. 951–954,.
88. Ji, Y. Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection [Text] / Y. Ji, A. Marra, M. Rosenberg, G. Woodnutt // J Bacteriol.- 1999.-V. 181.-P. 6585–6590.
89. Ji, Y. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury [Text] / Ji Y, Pang QF, Xu G, Wang L, Wang JK, Zeng YM. // Eur J Pharmacol.- 2008.- V. 587.- №1-3.- P. 1-7.
90. Jin, H.F. Hypotensive effects of hydrogen sulfide via attenuating vascular inflammation in spontaneously hypertensive rats [Text] / Jin H.F., Sun Y.,

Liang J.M., Tang C.S., Du J.B.// Zhonghua Xin Xue Guan Bing Za Zhi, - 2008. 36:541–45 (In Chinese).
91. Jha, S. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling [Text] / Jha S., Calvert J.W., Duranski M.R., Ramachandran A., Lefer D.J.// Am. J. Physiol. Heart Circ. Physiol. -2008. 295:H801–6.
92. Johansen, D. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role ofKATP channels. Basic Res [Text] / Johansen D., Ytrehus K., Baxter G.F.// Cardiol. - 2006101:53–60.
93. Jozwiak, K. Comparative molecular field analysis of fenoterol derivatives: A platform towards highly selective and effective beta(2)-adrenergic receptor agonists [Text] / K. Jozwiak, A.Y. Woo, M.J. Tanga, L. Toll, L. Jimenez,
J.A. Kozocas, A. Plazinska, R.P. Xiao, I.W. Wainer // Bioorg. Med. Chem.- 2010.- V. 18.- №2.- P. 728-736.
94. Kamp, T. Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C [Text] / T. Kamp, J. Hell // Circ. Res .- 2000.- V. 87.- P. 1095-1102.
95. Kapoor, A. Hydrogen sulfide, neurogenic inflammation, and cardioprotection: a tale of rotten eggs and vanilloid receptors [Text] / Kapoor A., Thiemermann C.// Crit. Care Med.-2010. 38:728–30.
96. Kimura, H. Hydrogen sulfide: its production, release and functions [Text]/ Kimura H. // Amino Acids. - 2010. In press, doi:10.1007/s00726-010-0510- x.
97. Kimura, H. Hydrogen sulfide: from brain to gut [Text]/ Kimura H.
//Antioxidants and Redox Signaling, vol. 12, no. 9, pp. 1111–1123, 2010.
98. Kimura, Y. Hydrogen sulfide protects neurons from oxidative stress [Text]/ Kimura Y., Kimura H. // FASEB J. -2004. 18:1165– 67.

99. Kimura, Y. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress [Text]/ Kimura Y., Dargusch R., Schubert D., Kimura H. // Antioxid. Redox Signal.-2006. 8:661–70.
100. Kimura, Y. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria [Text]/ Kimura Y., Goto Y., Kimura H. // Antioxid. Redox Signal. -2010. 12:1–13.
101. Kiss, L. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition [Text]/ Kiss L., Deitch E.A., Szabo C. // Life Sci. -2008. 24:589–94.
102. Kirstein, M. Nitric oxide regulates the calcium current in isolated human atrial myocytes [Text]/ M. Kirstein, M. Rivet-Bastide, Hatem, A. Bernardeal, J.J. Mercadier, R. Fichmeister // J. Clin. Invest.- 1995 -V. 95.- P. 794-802.
103. Kubo, S. Dual modulation of the tension of isolated gastric artery and gastric mucosal circulation by hydrogen sulfide in rats [Text]/ Kubo S., Kajiwara M., Kawabata A. // Inflammopharmacology. -2008. 15:288–92.
104. Kubo, S. Direct inhibition of en-dothelial nitric oxide synthase by hydrogen sulfide: contribu-tion to dual modulation of vascular tension [Text]
/ Kubo S., Doc I., Kurokawa Y. et al. // Toxicology. - 2007. № 232. P. 132— 146.
105. Lavu, M. Hydrogen sulfidemediated cardioprotection: mechanisms and therapeutic potential [Text]/ Lavu M., Bhushan S., and Lefer D. J. // Clinical Science, - 2011. vol. 120, no. 6, pp. 219–229.
106. Lee, M. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide [Text]/ Lee M., Schwab C., Yu S., McGeer E., McGeer P.L. // Neurobiol. Aging - 2009. 30:1523–34.
107. Leffler, C.W. Carbon monoxide and hydrogen sulfide: gaseous messengers in cerebrovascular circulation [Text]/ Leffler C.W., Parfenova H., Jaggar J.H., Wang R. // J. Appl. Physiol.-2006. 100:1065–76.

108. Levi, A.Y. Towards efficient information gathering agents [Text]/
A.Y. Levy, Y. Sagiv, D. Srivastava // In Etzioni, O., editor, Software Agents
- Papers from the.- 1994.- Spring Symposium.- P. 64-70.
109. Liang, R. Localization of cystathionine beta synthase in mice ovaries and its expression profile during follicular development [Text]/ Liang R., Yu W.D., Du J.B. et al. // Chin. Med. J. - 2006. Vol. 119. P. 1877–1883.
110. Liang, R. Cystathionine beta synthase participates in murine oocyte maturatione mediated by homocysteine [Text]/ Liang R., Yu W.D., Du J.B. et al. // Reprod. Toxicol. - 2007. Vol. 24. P. 89–96.
111. Li, L. Hydrogen sulfide is a novel mediator of lipopolysaccharide- induced inflammation in the mouse [Text]/ Li L., Bhatia M., Zhu Y.Z., Zhu Y.C., Ramnath R.D., et al.// FASEB J. -2005. 19:1196–98.
112. Li, L. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative [Text]/ Li L., Rossoni G., Sparatore A., Lee L.C., Del Soldato P., Moore P.K. // Free Radic. Biol. Med. -2007. 42:706–19.
113. Li, L. An overview of the biological significance of endogenous gases: new roles for old molecules [Text]/ Li L., Moore P.K. // Biochem. Soc. Trans. -2007. 35:1138–41.
114. Li, L. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? [Text]/ Li L., Moore P.K. // Trends Pharmacol. Sci, -2008. . 29:84–90.
115. Li, L. Characterization of a novel, water-soluble hydrogen sulfide– releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide [Text]/ Li L., Whiteman M., Guan Y.Y., Neo K.L., Cheng Y., et al.//Circulation -2008. 117:2351–6.
116. Li, L. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases [Text]/ Li L., Hsu A., Moore P.K.// Pharmacol. Ther. -2009. 123:386–400.

117. Li, L. GYY4137, a novel hydrogen sulfide–releasing molecule, protects against endotoxic shock in the rat [Text] / Li L., Salto-Tellez M., Tan C-H., Whiteman M., Moore P.K.// Free Radic. Biol. Med. -2009. 47:103–13.
118. Lim, J.J. Vasoconstric-tive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells [Text] / Lim J.J., Liu Y.-H., Win Khin E.S., Bian J.-S. // Am. J. Physiol. Cell. Physiol. - 2008.
№ 295. P. 1261—1270.
119. Linden, D.R. Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function [Text] / Linden D.R., Levitt M.D., Farrugia G., Szurszewski J.H. 2010. // Antioxid. Redox Signal. -2010. 12(9):1135–46.
120. Ling, Li. Hydrogen Sulfide and Cell Signaling [Text] / Ling Li., Peter R. and Philip K. M.// Annu. Rev. Pharmacol. Toxicol. - 2011. P. 169- 187).
121. Liu, H. Hydrogen sulfide protects from intestinal ischaemia- reperfusion injury in rats [Text] / Liu H., Bai X.B., Shi S., Cao Y.X. // J. Pharm. Pharmacol. -2009. 61:207–12.
122. Liu, Y. H. Hydrogen sulfide in the mammalian cardiovascular system [Text] / Liu Y. H., Lu M., Hu L. F.,. Wong P. T. H, Webb G. D., and Bian J. S. // Antioxidants & Redox Signaling, -2012. vol. 17, no. 1, pp. 141– 185.
123. Lowicka E.Hydrogen sulfide — the third gas of interest for pharmacologists [Text] / Lowicka E., Beltowski J // Pharmacol. Reports. - 2007. № 59. P. 4—24.
124. Luan, H.-F. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway [Text] / Luan H.-F., Zhao Z.-B., Zhao Q.-H., Zhu P., Xiu

M.-Y., and Ji Y., // Brazilian Journal ofMedical and Biological Research,- 2012. vol. 45, no. 10, pp. 898–905.
125. Luberda, Z. The role of glutathione in mammalian gametes [Text] / Luberda Z. // Reprod. Biol. 2005. Vol. 5. P. 5–17.
126. Lukyanenko, V. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes [Text] / V. Lukyanenko, I. Györke, S. Györke // Pflügers Arch.- 1996.- V. 432.- P. 1047-1054.
127. Matsunami, M. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon [Text] / Matsunami M., Tarui T., Mitani K., Nagasawa K., Fukushima O., et al. // Gut, -2009. 58:751–61.
128. Malekova, L. H2S and HS− donor NaHS inhibits intracellular chloride channels [Text] / Malekova L., Krizanova O., Ondrias K. // Gen. Physiol. Biophys. -2009.28:190–94.
129. Martin, G. R. Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract [Text] / Martin G. R., McKnight G. W., Dicay M. S., Coffin C. S., Ferraz J. G. P., and Wallace J. L.// Digestive and Liver Disease,
-2010. vol. 42, no. 2, pp. 103–109.
130. Meissner, G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum [Text] / G. Meissner // J. Biol. Chem. 1994.- V. 259.- P. 2365–2374.
131. Méry, P.-F. Comparative analysis of the time course of cardiac Ca2+ current response to rapid applications of β-adrenergic and dihydropyridine agonists [Text] / P.-F. Méry, A.M. Frace, H.C. Hartzell, R.A. Fischmeister // Nauyn-Schmeideberg's Archives of Pharmacology.- 1993.- V. 348.- P. 197- 206.
132. Méry, P-F. Nitric oxide synthase does not participate in the negative inotropic effect of acetylcholine in the frog heart [Text] / P-F. Méry, L. Hove-Madsen, J.-M. Chesnais, H.C. Hartzell, R. Fischmeister // Am. J. Physiol.- 1996.- V. 270.- P. 1178-1188.

133. Monjok, E.M. Inhibitory action of hydrogen sulfide on muscarinic receptor-induced contraction of isolated porcine irides [Text] / Monjok E.M., Kulkarni K.H., Kouamou G., McKoy M., Opere C.A., et al. // Exp. Eye Res. -2008. 87:612–16.
134. Moore, P.K. Hydrogen sulfide: from the smell of the past to the mediator of the future? [Text] / Moore P.K., Bhatia M., Moochhala S. // Trends Pharmacol. Sci. - 2003. Vol. 24. P. 609–611.
135. Mok, Y.Y.P. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis [Text] / Mok Y.Y.P., Atan M.S , Ping C.Y , Jing W.Z., Bhatia M , et al.. // Br. J. Pharmacol. -2004. 143:881–89.
136. Murata, M. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection [Text] / Murata M., Akao M., O’Rourke B. & Marban E. // Circ Res - 2001. 89, 891–898.
137. Nerbonne, J.M. Physiology and molecular biology of ion channels contributing to ventricular repolarization [Text] / J.M. Nerbonne, R.S. Kass
// Humana.- 2003.- V. 3.- P. 25–62.
138. Niedergerke, R. Two physiological agents that appear to facilitate calcium discharge from the sarcoplasmic reticulum in frog heart cells: adrenaline and ATP [Text] / R. Niedergerke, S. Page // Proc. R. Soc. Lond.- 1981b.- V. 213.- P. 325–344.
139. Mackenzie, A. Rapid secretion of interleukin-1beta by microvesicle shedding [Text] / A. MacKenzie, H.L. Wilson, E. Kiss-Toth, S.K. Dower,
R.A. North, A. Surprenant // Immunity.- 2001.- V. 15.- P. 825–835.
140. Massion, C.A. Impacting re-offense rates among youth sentenced in adult court: An epidemiological examination of the Juvenile Sentencing Alternatives Project [Text] / C.A. Mason, D.A. Chapman, S. Chang, J.

Simons // Journal of Clinical Child and Adolescent Psychology.- 2003.- V. 32.- P. 205-214.
141. Molenaar, M. Differential expression of the Groucho-related genes 4 and 5 during early development of Xenopus laevis [Text] / M. Molenaar, E. Brian, J. Roose, H. Clevers, O. Destrée // Mech Dev.- 2000.- V. 91.- №1-2.- P. 311-315.
142. Mustafa, A.K.H2S signals through protein S-sulfhydration [Text] / Mustafa A.K., Gadalla M.M., Sen N., Kim S.,Mu W.,et al. // Sci. Signal.- 2009. 2:ra72.
143. Oh, G.S. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide [Text] / Oh G.S., Pae H.O., Lee B.S., Kim B.N., Kim J.M., et al. // Free Radic. Biol. Med.- 2006. 41:106–19.
144. Olson, K.R. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation [Text] / Olson K.R., Dombkowski R.A., Russell M.J., Doellman M.M,. Head S.K., et al.// J. Exp. Biol. - 2006. 209:4011–23.
145. Olson, K.R. Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control [Text] / Olson K.R. // J. Exp. Biol. -2008. 211:2727–34.
146. Ono, K. Potentiation by cyclic GMP of /3-adrenergic effect on Ca2" current in guinea-pig ventricular cells [Text] / K. Ono, W. Trautwein // Journal of Physiology 1991.- V. 443.- P. 387-404.
147. Osborne, N.N. ACS67, a hydrogen sulfide–releasing derivative of latanoprost acid, attenuates retinal ischemia and oxidative stress to RGC-5 cells in culture [Text] / Osborne N.N., Ji D., Abdul Majid A.S., Fawcett R.J., Sparatore A., Del Soldato P. // Investig. Ophthalmol. Vis. Sci. - Jang 2010. 51:284–94.

148. Osipov, R.M. Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass [Text] / Osipov R.M., Robich M.P., Feng J., Chan V., Clements R.T., et al. // Interact. Cardiovasc. Thorac. Surg. - 2010. 10:506–12.
149. Ozawa, K. S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking [Text] / K. Ozawa, E.J. Whalen, C.D. Nelson, Y. Mu,
D.T. Hess, R.J. Lefkowitz, J.S. Stamler // Mol. Cell.- 2008.- V. 31.- №3.- P. 395–405.
150. Papapetropoulos, A. Hydrogen sulfide is an endogenous stimulator of angiogenesis [Text] / Papapetropoulos A., Pyriochou A., Altaany Z., Yang G., Marazioti A., et al. // Proc. Natl. Acad. Sci. USA. - 2009. 106:21972–77.
151. Pashkov, O.L. The study of the levels of soluble TNF receptorp55 and IL-8 in blood and urine of patients with bladder cancer [Text] / Pashkov O.L., Shishlo L.M., Prokhorov V.I. // Siberian Journal of Oncology, - 2008.Suppl 1: 104-105. Russian].
152. Paulus, W.J. Nitric oxide's role in the heart: control of beating or breathing? [Text] / W.J. Paulus, J.G. Bronzwaer.// Am J Physiol Heart Circ Physiol.- 2004.- V. 287.- №1.- P. 8-13.
153. Peleg, G. Single-molecule spectroscopy of the beta(2) adrenergic receptor: observation of conformational substates in a membrane protein [Text] / G. Peleg, P. Ghanouni, B.K. Kobilka, R.N. Zare // Proc. Natl. Acad. Sci.- USA.- 2001.- V. 98.- №15.- P. 8469-8474.
154. Perrino, E. New prostaglandin derivative for glaucoma treatment [Text] / Perrino E., Uliva C., Lanzi C., Del Soldato P., Masini E., Sparatore A. // Bioorg. Med. Chem. Lett. - 2009. 19:1639–42.
155. Pietri, R. Factors controlling the reactivity of hydrogen sulfide with hemeproteins [Text] / R. Pietri, A. Lewis, R.G. Leon // Biochemistry.- 2009.- V. 48.- P. 4881-4894.

156. Polhemus, D.J. The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure [Text] / Polhemus D.J., Calvert J. W., Butler J., and Lefer D. J., //Scientifica, vol. - 2014, Article ID 768607, 8 pages, 2014.
157. Polunin, I.N. Toxic pulmonary edema in acute poisoning with hydrogen sulfide gas [Text] / Polunin, I.N., Asfandiyarov R.I., Trizna N.N.
// Astrakhan: AGMA, - 1999. Russian.
158. Pushchina, Е.V. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae) [Text] / Pushchina Е.V., Varaksin A.A., Obukhov D.K. // Neurochem. J. - 2011. Vol. 5. No. 1. P. 24–34.
159. Qu, K. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem [Text] / Qu K., Lee S.W., Bian J.S., Low C.M., Wong P.T.H. // Int.- 2008. 52:155–65.
160. Rapundalo, S.T. Cardiac protein phosphorylation: functional and pathophysiological correlates [Text] / S.T. Rapundalo // Cardiovasc Res 1998.- V. 38.- P. 559–588.
161. Rinaldi, L. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3 [Text] / Rinaldi L., Gobbi G., Pambianco M., Micheloni C., Mirandola P., Vitale M. // Lab. Investig. -2006. 86:391–97.
162. Rossoni G.,The hydrogen sulphide–releasing derivative of diclofenac protects against ischaemia–reperfusion injury in the isolated rabbit heart [Text] / Rossoni G., Sparatore A., Tazzari V., Manfredi B., Del Soldato P., Berti F. 2008. // Br. J. Pharmacol. -2008. 153:100–9.
163. Rosenbaum, D.M. Structure and function of an irreversible agonist- β(2) adrenoceptor complex [Text] / D.M. Rosenbaum, C. Zhang, J.A. Lyons,
R. Holl, D. Aragao, D.H. Arlow, S.G. Rasmussen, H.J. Choi, B.T. Devree,
R.K. Sunahara, P.S. Chae, S.H. Gellman, R.O. Dror, D.E. Shaw, W.I. Weis, Caffrey M., P. Gmeiner, B.K. Kobilka // Nature.- 2011.- V. 469.- P. 236-240.

164. Salloum, F.N. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G– dependent generation of hydrogen sulfide [Text] / Salloum F.N., Chau V.Q., Hoke N.N., Abbate A., Varma A., et al. // Circulation, -2009.120:S31–36.
165. Scriven, D.R.L. Distribution of proteins implicated in excitation- contraction coupling in rat ventricular myocytes / D.R.L. Scriven, P. Dan, E.D.W. Moore // Biophys. J.- 2000.- V. 79.- P. 2682-2691.
166. Searcy, D.G. Sulfur reduction by human erythrocytes/ D.G. Searcy, S.H. Lee// J.Exp. Zool. – 1998.– V. 282.– P.310-322.
167. Seino, S. Physiological and pathophysiological roles of ATP-sensitive K+ channels [Text] / Seino S. & Miki T.// Prog Biophys Mol Biol. -2003. 81, 133–176.
168. Sen, U. Hydrogen sulfide ameliorates hyperhomocysteinemia- associated chronic renal failure [Text] / Sen U., Basu P., Abe O.A., Givvimani S., Tyagi N. et al. // Am. J. Physiol. Renal. Physiol. -2009. 297:F410–19.
169. Shannon, T.R. Potentiation of fractional SR Ca release by total and free intra-SR Ca concentration [Text] / T.R. Shannon, K.S. Ginsburg, D.M. Bers // Biophys. J.- 2000.- V. 78.- P. 334-343.
170. Shi, Y.X. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arteries, interstitial fibrosis, and ROS production in spontaneously hypertensive rats [Text] / Shi Y.X., Chen Y., Zhu Y.Z., Huang G.Y., Moore P.K., et al. // Am. J. Physiol. Heart Circ. Physiol. -2007. 293:H2093–100.
171. Schicho, R. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon [Text] / Schicho R., Krueger D., Zeller
F. et al. // Gastroenterology. - 2006. Vol. 131. P. 1542–1552.
172. Shymans’ka, T.V. Effect of hydrogen sulfideonisolatedrat heart reaction under volume load and ischemia-reperfusion [Text] / Shymans’ka

T.V., Hoshovs’ka I.V., Semenikhina O. M., and Sahach V. F.// Fiziolohichnyˇı Zhurnal, -2012. vol. 58, no. 6, pp. 57–66.
173. Siebert, N. H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of KATP channels [Text] / Siebert N., Cantrґe D., Eipel C., Vollmar B.// Am. J. Physiol. Gastrointest. Liver Physiol. -2008. 295:G1266–73.
174. Sivarajah, A. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R [Text] / Sivarajah A., Collino M., Yasin M., Benetti E., Gallicchio M., Mazzon E., Cuzzocrea S., Fantozzi R. & Thiemermann C.// Shock -2009. 31, 267–274.
175. Sivarajah, A. The production of hydrogen sulfide limitsmyocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat [Text] / Sivarajah A., McDonald M.C., Thiemermann C. // Shock, -2006. 26:154–61.
176. Sitsapesan, R. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+ [Text] / R. Sitsapesan, A.J. Williams // J. Membr. Biol.- 1994.- V. 137.- P. 215-226.
177. Sitdikova G.F. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells [Text] / Sitdikova G.F., Weiger T.M., Hermann A. // PflЁ ug. Arch. -2010. 459:389– 97.
178. Skeberdis, V.A. b2 adrenergic activation of L-type Ca2+ current in cardiac myocytes [Text] / V.A. Skeberdis, J. Jurevicius, R. Fischmeister // J Pharmacol Exp Ther.- 1997b.- V. 283.- P. 452–461.
179. Sommer J.R. To exite a heart: a bird’s view [Text] / J.R. Sommer, E. Bossen, H. Dalen, P. Dolber, T. High, P. Jewett, J. Jonson, J. Junker, S. Leonard, R. Nassar, B. Scherer, M. Spach, T. Spray, I. Taylor, N.R. Wallace,
R. Waugh // Acta Physiol. Scand.- 1991.-V.-159.-P. 5-21.

180. Srilatha, B. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction - a pilot study [Text] / Srilatha B., Adaikan P.G., Moore P.K. // Eur. J. Pharmacol.- 2006. Vol. 535. P. 280–282.
181. Steinberg, S.F. Compartmentation of G protein coupled signaling pathways in cardiac myocytes [Text] / S.F. Steinberg, L.L. Brunton // Annu Rev Pharmacol Toxicol.– 2001.– V. 41.– P. 751–773.
182. Snyder, S. Protein modifications involved in neurotransmitter and gasotransmitter signaling [Text] / S. Snyder // Trends in Neurosciences.- 2010.- V. 33.- №.11.
183. Sumii, K. cGMPdependent protein kinase regulation of the Ltype Ca. current in rat ventricular myocytes [Text] / K. Sumii, N. Sperelakis // Circulation Research.- 1995.- V. 77.- P. 803—812.
184. Sun, Y. Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR [Text] / Y. Sun, J. Huang, Y. Xiang, M. Bastepe, H. Jüppner, B.K. Kobilka, J.J. Zhang, X.Y. Huang // EMBO J.- 2007.- V. 26.- №1.- P. 53-64.
185. Sun, Y.G. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes [Text] / Sun Y.G., Cao Y.X., Wang W.W., Ma S.F., Yao T., Zhu Y.C. // Cardiovasc. Res.
-2008.79:632–41.
186. Sutko, J.L. Ryanodine receptor Ca21 release channel: does diversity in form equal diversity in function? [Text] / J.L. Sutko, J.A. Airey // Phys. Rev.- 1997.- V. 76.- P. 1027–1071.
187. Srilatha, B. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—a pilot study [Text] /Srilatha B., Adaikan P.G., Moore P.K.// Eur. J. Pharmacol.-2006. 535:280–82.
188. Stern, M.D. Excitation-contraction in the heart: the state of the question / M.D. Stern, E. Lakatta // FASEB Journal.- 1992.- V. 6. P. 3092— 3100.

189. Streng, T. Distribution and function of the hydrogen sulfide–sensitive TRPA1 ion channel in rat urinary bladder [Text] / Streng T., Axelsson H.E., Hedlund P., Andersson D.A., Jordt S.E., et al.// Eur. Urol. -2008. 53:391–99.
190. Stipanuk, M.H. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur [Text] / Stipanuk M.H., Ueki I. // J. Inherit. Metab. Dis. -2010. In press, doi:10.1007/s10545-009- 9006-9.
191. Stuhlmeier, K.M. NF-κB independent activation of a series of proinflammatory genes by hydrogen sulfide [Text] / Stuhlmeier K.M., Broll J., Iliev B. // Exp. Biol. Med. -2009.234:1327–38.
192. Sun, Y.G. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes [Text] / Sun Y.G., Cao Y.X., Wang W.W., Ma S.F., Yao T. & Zhu Y.C.// Cardiovasc Res.
-2008. 79, 632–641.
193. Szabo, C. Hydrogen sulphide and its therapeutic potential [Text] / Szabo C. // Nat. Rev. Drug Discov.- 2007. 6:917–35.
194. Tamizhselvi, R. Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury [Text] / Tamizhselvi R., Moore P.K., Bhatia M.// Pancreas, -2008. 36:e24–31.
195. Tangerman, A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices [Text] / Tangerman A. // J. Chromatogr. B, -2009. 877:3366–77.
196. Telezhkin, V. [Text] / Telezhkin V., Brazier S.P., Cayzac S., Muller C.T., Riccardi D.// Kemp P.J. - 2009.
197. Trafford, A.W. Integrative analysis of calcium signalling in cardiac muscle [Text] / A.W. Trafford, M.E. Diaz, S.C. O’Neill, D.A. Eisner // Front Biosci. - 2002.- V. 7.- P. 843–852.

198. Trevisani, M. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways [Text] / Trevisani M., Patacchini R., Nicoletti P., Gatti R., Gazzieri D., et al.// Br. J. Pharmacol. -2005.145:1123– 31Hydrogen sulfide inhibits human BKCa channels. Adv. Exp. Med. Biol. 648:65–72.
199. Tripatara, P. Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction [Text] / Tripatara P., Patel N.S., Collino M., Gallicchio M., Kieswich J., et al.// Lab. Investig.- 2008 88:1038–48.
200. Tyagi, N. H2S protects against methionine-induced oxidative stress in brain endothelial cells [Text] / Tyagi N., Moshal K.S., Sen U., Vacek T.P., Kumar M., et al.// Antioxid. Redox Signal. -2009. 11:25–33.
201. Vinogradova, T.M. β-Adrenergic stimulation modulates ryanodine receptor Ca2+ release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells [Text] / T.M. Vinogradova, K.Y. Bogdanov, E.G. Lakatta // Circ Res.- 2002.- V. 90.- P. 73-79.
202. Wahler, G.M. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase [Text] / G.M. Wahler, S.J. Dollinger // American Journal of Physiology.- 1995.- V. 37.- P. 45–54.
203. Wallace, J.L. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide–releasing diclofenac derivative in the rat [Text] / Wallace J.L., Caliendo G., Santagada V., Cirino G., Fiorucci S.// Gastroenterology, - 2007. 132:261–71.
204. Wallace, J.L. Hydrogen sulfide enhances ulcer healing in rats [Text]
/ Wallace J.L., Dicay M., McKnight W., Martin G.R. //FASEB J. -2007. 21:4070–76.
205. Wang, R. Hydrogen sulfide: a new EDRF [Text] / Wang R. //. Kidney Int. -2009.76:700–4.

206. Wang, R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? [Text] / Wang R. // FASEB J. - 2002. Vol. 16. P. 1792–1798.
207. Wang, R. Signal transduction and the gasotransmitters: NO,CO and H2S in biology and medicine [Text] / R. Wang // Humana Press.- 2004.- P. 392.
208. Wang, L. Preconditioning limits mitochondrial Ca2+ during ischemia in rat hearts: role of KATP channels [Text] / Wang L., Cherednichenko G., Hernandez L., Halow J., Camacho S.A., Figueredo V & Schaefer S. // Am J Physiol Heart Circ Physiol,- 2001. 280, H2321–H2328.
209. Wang, Y. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice [Text] / Wang Y., Zhao X., Jin H., Wei H., Li W., et al.// Arterioscler. Thromb. Vasc. Biol.
-2009. 29:173–79.
210. Webb, G.D. Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery [Text] / Webb G.D., Lim L.H., Oh V.M.S., Yeo S.B., Cheong Y.P., et al.// J. Pharmacol. Exp. Ther. - 2008. 324:876–82.
211. Whitfield, N.L. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling [Text] / Whitfield N.L., Kreimier E.L., Verdial F.C., Skovgaard N., Olson K.R. // Am. J. Physiol. Regul. Integr. Comp. Physiol. - 2008. 294:R1930–37 .
212. Whiteman, M. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages [Text] / Whiteman M., Li L., Rose P., Tan C.H., Parkinson D.B., Moore P.K.// Antioxid. Redox Signal.- 2010. 12(10):1147–54.

213. Whiteman, M. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? [Text]
/ Whiteman M., Moore P.K.// J. Cell. Mol. Med. -2009.13:488–507.
214. Whiteman, M. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? [Text] / Whiteman M., Armstrong J.S., Chu S.H., Jia-Ling S., Wong B.S., et al.// J. Neurochem.- 2004. 90:765– 68.
215. Wang, M.J. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia [Text] / Wang M.J., Cai W.J., Li N., Ding Y.J., Chen Y., Zhu Y.C..// Antioxid. Redox Signal. -2010. 12(9):1065–77.
216. Xiao, R.P. Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells [Text] / R.P. Xiao, E.G. Lakatta // Circ Res.- 1993.- V. 73.- №2.- P. 286-300.
217. Xiang, Y. The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes [Text]
/ Y. Xiang, B. Kobilka // Proc. Natl. Acad. Sci.- USA.- 2003.- V. 100.-
№19.- P. 10776–10781
218. Xu, M. Electrophysiological effects of hydrogen sulfide on guinea pig papillary muscles [Text] / M. Xu, Y.M. Wu, Q. Li, F.W. Wang, R.R. He // Acta Physiol. Sin.- 2007.- V. 59.-P. 215-220.
219. Yan, H. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats [Text] / Yan H., Du J., Tang C. // Biochem. Biophys. Res. Commun. - 2004. 313:22–27.
220. Yan, S.K. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells [Text] / Yan S.K., Chang T., Wang H., Wu L., Wang R., Meng Q.H. // Biochem. Biophys. Res. Commun. -2006. 351:485–91.

221. Yang, G. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase [Text] / Yang G., Wu L., Jiang B., Yang W., Qi J., et al. // Science, -2008. 322:587–90.
222. Yanfei, W. Impact of L-arginine on hydrogen sulfide/cystathionine- γ-lyase pathway in rats with high blood flow–induced pulmonary hypertension [Text] / Yanfei W., Lin S., Du J., Tang C. //Biochem. Biophys. Res. Commun. - 2006. 345:851–57.
223. Yang, G. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3 [Text] / Yang G., Sun X., Wang R. // FASEB J.- 2004. 18:782– 84.
224. Yang, G. Pro-apoptotic effect of endogenousH2S on human aorta smooth muscle cells [Text] / Yang G., Wu L., Wang R. // FASEB J. - 2006.20:553–55.
225. Yellen, G. The voltage-gated potassium channels and their relatives [Text] / G. Yellen // Nature.- 2002.- V. 419.- P. 35-42.
226. Yokoshiki, H. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells [Text] / H. Yokoshiki, M. Sunagawa, T. Seki
// Am J Physiol.- 1998.- V. 274.- P. 25-37.
227. Yonezawa, D.A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium [Text] / Yonezawa D., Sekiguchi F., Miyamoto M., Taniguchi E., Honjo M., et al.// Toxicology, -2009.241:11– 18.
228. Yong, Q.C. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning [Text] / Yong Q.C., Lee S.W., Foo C.S., Neo K.L., Chen X., Bian J.S. // Am. J. Physiol. Heart Circ. Physiol. - 2008. 295:H1330–40.
229. Yuan, Q. Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress

[Text] / Yuan Q., Hong S., Han S. et al.// Plos One, -2011. vol. 6, no. 10, article e25811.
230. Yusof, M. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism [Text] / Yusof M., Kamada K., Kalogeris T., Gaskin F.S., Korthuis R.J.// Am. J. Physiol. Heart Circ. Physiol.- 2009. 296:H868–76.
231. Zhao, W. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener [Text] / Zhao W., Zhang J., Lu Y., Wang R.// EMBO J.- 2001. 20:6008–16.
232. Zhong, G. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase [Text] / Zhong G., Chen F., Cheng Y., Tang C., Du J.// J. Hypertens.- 2003. 21:1879–85.
233. Zhao, X. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats [Text] / Zhao X., Zhang L.K., Zhang C.Y., Zeng X.J., Yan H., et al.// Hypertens. Res. -. 2008. 31:1619–30.
234. Zagli, G. Hydrogen sulfide inhibits human platelet aggregation [Text]
/ Zagli G., Patacchini R., Trevisani M., Abbate R., Cinotti S., et al. // Eur. J. Pharmacol. - 2007. 559:65–68.
235. Zanardo, R.C.O. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation [Text] / Zanardo R.C.O., Brancaleone V., Distrutti E., Fiorucci S., Cirino G., Wallace J.L. // FASEB J. - 2006.20:2118–20.
236. Zhang, H. The role of hydrogen sulfide in cecal ligation and punctureinduced sepsis in the mouse [Text] / Zhang H., Zhi L., Moore P.K., Bhatia M. // Am. J. Physiol. Lung Cell. Mol. Physiol.- 2006. 290:L1193–201.
237. Zhang, Z. Hydrogen sulfide contributes to cardioprotection during ischemia-reperfusion injury by opening KATP channels [Text] / Zhang Z.,

Huang H., Liu P., Tang C., Wang J. // Can J. Physiol. Pharmacol.- 2007. 85:1248–53.
238. Zhi, L. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-κB pathway [Text] / Zhi L., Ang A.D., Zhang H., Moore P.K., Bhatia M. // J. Leukoc. Biol.- 2007. 81:1322–32.
239. Zhu, Y.Z. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats [Text] / Zhu Y.Z., Wang Z.J., Ho P., Loke Y.Y., Zhu Y.C., et al. // J. Appl. Physiol.- 2007. 102:261–68.
240. Zhuo, Y. Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene [Text] / Zhuo Y., Chen P. F., Zhang A. Z., Zhong H., Chen C.Q., and Zhu Y. Z.//Biological and Pharmaceutical Bulletin, -2009.vol. 32, no. 8, pp. 1406– 1410.
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00537
© Рефератбанк, 2002 - 2024