Код | 530524 |
Дата создания | 2019 |
Мы сможем обработать ваш заказ (!) 23 декабря в 16:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
|
Сделана в мае 2018 года.
Цель исследования – изучить линии второго порядка на плоскости.
Для достижения поставленной цели необходимо решить ряд задач:
- изучить эллипс и его свойства;
- изучить гиперболу и ее свойства;
- изучить параболу и ее свойства;
- привести общее уравнение кривой второго порядка к каноническому виду;
- вывести уравнения директрис и радиусов для эллипса, гиперболы и параболы.
Объект исследования – аналитическая геометрия.
Предмет исследования – кривые второго порядка.
Методы исследования – анализ, обобщение, систематизация имеющегося материала, доказательство геометрических фактов.
Теоретическую базу исследования составили работы Л.В. Львовой, Л.С. Атанасян, В.Т. Базылева, А.С. Бортаковского, А.А. Ларина, Д.Т. Письменного и др.
Курсовая работа состоит из введения, двух глав, заключения и списка использованных источников.
Работа была успешно сдана - заказчик претензий не имел.
Уникальность работы по Antiplagiat.ru на 22.11.2019 г. составила 83%.
Введение 3
Глава 1 Линии второго порядка на плоскости 5
1.1 Эллипс 5
1.2 Гипербола 10
1.3 Парабола 18
Глава 2 Практическое применение линий второго порядка 23
2.1 Директориальное свойство эллипса, гиперболы, параболы 23
2.2 Приведение общего уравнения линии второго порядка к каноническому виду 25
Заключение 30
Список используемой литературы 33
1. Атанасян Л.С., Базылев В.Т. Геометрия, ч.1 / Учеб. Пособие для студентов физ.-мат. фак. пед. вузов. – М.: КНОРУС, 2011. – 400 с.
2. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: учебник для студ. вузов / Д.В. Беклемишев. – М. : Физматлит, 2002. – 374 с.
3. Бортаковский, А.С. Аналитическая геометрия в примерах и задачах: Учеб. пособие / А.С. Бортаковский, А.В. Пантелеев. — М.: Высш. шк., 2005. — 496 с.
4. Бугров Я.С., Никольский С.М. Высшая математика. Том 1. Элементы линейной алгебры и аналитической геометрии. – М.: Дрова, 2004. – 288 с.
5. Додунова Л.К., Митрякова Т.М. Кривые и поверхности второго порядка: Учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2013. – 38 с.
6. Ефимов Н.В. Краткий курс аналитической геометрии. – М.: Наука, 1976. – 226 с.
7. Ильин В.А., Позняк Э.Г. Аналитическая геометрия: Учеб. Для вузов. – 7-е изд., стер. – М.: ФИЗМАТЛИТ, 2004. – 224 с.
8. Ларин А.А. Курс высшей математики. Часть 1 [Электронный ресурс]. – Режим доступа: http://alexlarin.net/kvm1.html (Дата обращения: 23.04.2018).
9. Львова Л.В. Аналитическая геометрия на плоскости и в пространстве: учебное пособие. – Барнаул: Изд-во АлтГПА, 2011. – 212 с.
10. Методические указания к практическим занятиям по аналитической геометрии / сост. Л.В. Львова. – Барнаул: Изд-во АлтГПА, 2012. – 102 с.
11. Морозова Е.А., Скляренко Е.Г. Аналитическая геометрия. Методическое пособие. – М., 2004. – 103 с.
12. Письменный Д.Т. Конспект лекций по высшей математике: полный курс. – 4-е изд. – М.: Айрис-пресс, 2006. – 608 с.
13. Решение задач по аналитической геометрии. Линии второго порядка / сост. Т.Н. Глушакова, И.Б. Крыжко, М.Е. Эксаревская [Электронный ресурс]. – Режим доступа: http://window.edu.ru/resource/549/65549/files/m08-183.pdf (Дата обращения: 24.04.2018).
14. Рубан П.И., Е.Е.Гармаш Руководство к решению задач по аналитической геометрии. –М., Высшая школа, 1963. – 314 с.
15. Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. 31 - е изд., стер. – СПб.: Издательство «Лань», 2003. – 336 с.