Вход

Приложения определенного интеграла в геометрии и физике

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 508657
Дата создания 2020
Мы сможем обработать ваш заказ (!) 22 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 180руб.
КУПИТЬ

Описание

Дата изготовления: декабрь 2019 года.

Цель исследования – изучить геометрические и физические приложения определенного интеграла.

Для достижения поставленной цели необходимо решить ряд задач:

- изучить понятие определенного интеграла, его геометрический смысл;

- изучить геометрические приложения определенного интеграла;

- изучить физические приложения определенного интеграла;

- привести конкретные примеры решения геометрических и физических задач с помощью определенного интеграла.

Объект исследования – определенный интеграл. Предмет исследования – приложения определенного интеграла в геометрии и физике.

Методы исследования: изучение специальной литературы по математическому анализу, систематизация, обобщение, практическое применение изученного материала.

Теоретическую базу исследования составили работы Л.Д. Кудрявцева,

Г.И. Запорожца, Г.М. Фихтенгольца и др.

Работа состоит из введения, двух глав, заключения, списка использованных источников.

Работа была успешно сдана - заказчик претензий не имел.

Уникальность работы по Antiplagiat.ru на 13.02.2020 г. составила 67%.

Содержание

Введение 3

Глава 1 Теоретические основы применения определенного интеграла в геометрии и физике 4

1.1 Интеграл Римана как функция верхнего (нижнего) предела интегрирования. Формула Ньютона-Лейбница 4

1.2 Геометрические приложения определенного интеграла 6

1.3 Физические приложения определенного интеграла 11

Глава 2 Практическое применение геометрических и физических приложений определенного интеграла к решению задач 17

2.1 Геометрические задачи 17

2.2 Физические задачи 19

Заключение 23

Список используемых источников и литературы 25

Список литературы

1. Баврин, И.И. Математический анализ: Учебник и практикум для СПО / И.И. Баврин. – 2-е изд., испр. и доп. – Люберцы: Юрайт, 2016. – 327 c.

2. Гаврилов, В.И. Математический анализ: Учебное пособие для студентов учреждений высшего профессионального образования / В.И. Гаврилов, Ю.Н. Макаров, В.Г. Чирский. – М.: ИЦ Академия, 2013. – 336 c.

3. Высшая математика для экономистов: учебник для студентов вузов, обучающихся по экономическим специальностям / [Н.Ш. Кремер и др.]; под ред. проф. Н.Ш. Кремера. – 3-е изд. – М.: ЮНИТИ-ДАНА, 2010. – 479с.

4. Давыдов Н.А., Коровкин П.П., Никольский В.Н. Сборник задач по математическому анализу. – М.: Просвещение, 1973. – 198 с.

5. Данко, П.Е. Высшая математика в упражнениях и задачах. В 2 ч. Ч. 1: Учеб. пособие для вузов. – М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и Образование»», 2015. – 304 с.

6. Задачник по курсу математического анализа. Учеб. пособие для студентов заочн. отделений физ. мат. фак-ов пединститутов. Ч. 1. Под ред. Н.Я. Виленкинв. – М.: Просвещение, 1971. – 343 с.

7. Запорожец, Г.И. Руководство к решению задач по математическому анализу. – 4-е изд. – М.: Высшая школа, 1966. – 464 с.

8. Ильин, В.А. Математический анализ ч. 2 3-е изд. учебник для бакалавров / В.А. Ильин, В.А. Садовничий, Б.Х. Сендов. – Люберцы: Юрайт, 2016. – 357 c.

9. Карташев, А.П. Математический анализ. 2-е изд., стер / А.П. Карташев, Б.Л. Рождественский. – СПб.: Лань, 2007. – 448 c.

10. Киркинский, А.С. Математический анализ: Учебное пособие для ВУЗов / А.С. Киркинский. – М.: Академический проект, 2006. – 526 c.

11. Кудрявцев, Л.Д. Курс математического анализа. В 3 т. Т. 1 / Л.Д. Кудрявцев. – М.: Дрофа, 2003. – 704 с.

12. Карташев, А.П. Математический анализ. 2-е изд., стер / А.П. Карташев, Б.Л. Рождественский. – СПб.: Лань, 2007. – 448 c.

13. Киркинский, А.С. Математический анализ: Учебное пособие для ВУЗов / А.С. Киркинский. — М.: Академический проект, 2006. — 526 c.

14. Кручкович Г.И., Гутарина Н.И., Дюбюк П.Е. и др. Сборник задач по курсу высшей математики. – М.: Высшая школа, 1973. – 576 с.

15. Лейнартас, Е.К. Математический анализ: Учебное пособие для бакалавров / А.М. Кытманов, Е.К. Лейнартас, В.Н. Лукин; Под ред. А.М. Кытманов. – М.: Юрайт, 2012. – 607 c.

16. Марон И.А. Дифференциальное и интегральное исчисление в примерах и задачах. Функции одной переменной. – М.: Наука, 1970. – 400 с.

17. Мысливец, С.Г. Математический анализ: Учеб. пособие для экон. Специальностей / С.Г. Мысливец. – Красноярск, 2008. – 276 с.

18. Приложения определенного интеграла к решению задач геометрии и физики: Учебно-методическое пособие / Под ред. М.Г. Ляпунова. – Благовещенск: Амурский гос. ун-т, 2000. – 44 с.

19. Фихтенгольц, Г.М. Курс дифференциального и интегральноинтегрального исчисления. В 3 т. Т. I / Пред. и прим. А.А. Флоринского. – М.: Лань, 2019. – 608 с.

20. Черненко, Высшая математика в примерах и задачах: Учебное пособие для вузов. В 3 т.: Т. 1. – СПб: Политтехника, 2010. – 703 с.

Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.0046
© Рефератбанк, 2002 - 2024