Вход

Сходимость функциональных последовательностей и рядов

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 488492
Дата создания 2018
Мы сможем обработать ваш заказ (!) 1 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 180руб.
КУПИТЬ

Описание

Теория рядов один из очень важных разделов математического анализа. И не столько потому, что многочисленными применениями их проникнуто все знание как самого анализа, так и почти всех опирающихся на него прикладных наук, сколько по той причине, что на сравнительно несложном материале, какой представляет нам собою теория рядов, типичные для всего анализа ходы мыслей, цепи представлений и образов и даже целые логические схемы выступают с особенной ясностью и рельефностью; хорошо известно, что учащемуся, который активно и прочно овладел теорией рядов, дальнейшее усвоение разделов анализа обычно уже не доставляет никаких затруднений.” [6] Соглашаясь с этими словами известного советского педагога и математика Хинчина А.Я., можно сказать, что теория рядов – это неотъемлемая часть образования инженера, физика, математика, преподавателя учебного заведения, так как она является средством для вычисления значений функций и интегралов, которые не берутся в конечном виде, для проведения технических расчетов (например, для определения в строительных конструкциях прогиба балок), она используется при введении и обосновании новых понятий в разных областях математики (например, понятия голоморфной функции в теории функций комплексной переменной, интеграла Лебега от простой функции), служит аппаратом получения важных результатов как в самой математике, так и в мат. физике. Теория рядов непосредственно стыкуется со школьным курсом алгебры, например, по таким вопросам, как вычисление значений тригонометрических функций, арифметическая и геометрическая прогрессии, предел последовательности, бином Ньютона, вычисление значений тригонометрических функций и т.п.
Это и обуславливает актуальность данной работы.
Целью работы ставлю для себя рассмотреть числовые ряды, их свойства, сходимость функциональных последовательностей и рядов.
Задачами данной работы являются:
- определение функционального ряда;
- выяснение равномерной сходимости функционального ряда;
- описание свойств равномерно сходящихся рядов;
- определение степенных рядов;
- определение ряда Тейлора;
- разложение в ряд Маклорена элементарных функций;
- решение задач на разложение функций в ряд.

Содержание

ВВЕДЕНИЕ……………………………………………………………
1. ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ……………
2. РАВНОМЕРНАЯ СХОДИМОСТЬ ФУНКЦИОНАЛЬНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ……………….……….……………
3. ФУНКЦИОНАЛЬНЫЕ РЯДЫ …………………………………….
3.1. Определение функционального ряда…………………………………
3.2. Равномерная сходимость функционального ряда…………………...
3.3. Свойства равномерно сходящихся рядов…………………………….
3.4. Степенные ряды………………………………………………………..
3.5. Ряд Тейлора…………………………………………………………….
ЗАКЛЮЧЕНИЕ………………………………………………………..
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………….. 3
5
9
12
12
14
17
18
23
26
28
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00494
© Рефератбанк, 2002 - 2024