Вход

Площади неевклидовых многоугольников

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 450892
Дата создания 2020
Страниц 27
Мы сможем обработать ваш заказ (!) 23 декабря в 16:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
950руб.
КУПИТЬ

Содержание

Введение 3
1. Сферическая геометрия и неевклидова геометрия Римана 6
2. Примеры теорем неевклидовой геометрии Римана. Площадь треугольника и многоугольника 9
3. Геометрия Лобачевского 14
4. Площадь многоугольников 20
Заключение 26
Список литературы 27

Введение

Первым неевклидовым геометром можно считать самого Евклида. Его нежелание использовать «несамоочевидный» пятый постулат следует хотя бы из того, что свои первые двадцать восемь предложений Евклид доказывает, не прибегая к этому постулату. С первого века до н.э. до 1820 математики пытались вывести пятый постулат из остальных, но преуспели лишь в замене его различными эквивалентными допущениями такими как «две параллельные линии всюду равно удалены друг от друга» или «любые три точки, не расположенные на одной прямой, принадлежат окружности». Ближе всех подошел к цели логик и математик Дж. Саккери, который начал свои исследования с так называемого четырехугольника Саккери.

Фрагмент работы для ознакомления

-

Список литературы

[1] Соколова, Д. Ю. О площади трапеции на плоскости Лобачевского / Д. Ю. Соколова // Сиб. электрон, матем. изв. - 2012. - Т. 9. - С. 256- 260.
[2] Понарин, Я. П. Элементарная геометрия. Т.1. Планиметрия / Я. П. Понарин. - М.: МЦНМО. 2004. - С. 312.
[3] Bretschneider, C. A. Untersuchung der trigonometrischen Relationen des geradlinigen Viereckes / C. A. Bretschneider // Arch. Math. - 1842. - Bd. 2. - S. 225-261.
[4] Байгонакова, Г. А. Аналитические методы в теории объемов многогранников в неевклидовой геометрии / Г. А. Байгонакова // Автореферат. -2013. -Т. - С. 10-16.
[5] Байгонакова, Г. А. Площадь трапеции в сферической геометрии / Г. А. Байгонакова, Д. Ю. Соколова // Материалы школы конференции по геометрическому анализу (Горно-Алтайск, И - 19 августа, 2012 г.). - Горно-Алтайск: РИО ГАГУ, 2012. - С. 12-13.
[6] Винберг, Э. Б. Геометрия 2. Современные проблемы математики / Э. Б. Винберг - М.: ВИНИТИ (Итоги науки и техники), 1988. Т. 29. - С. 1-146.
[7] Яглом, И. М. Геометрические преобразования. Линейные и круговые преобразования / И. М. Яглом - М.: Гос. изд. технико-теоритической литературы, 1956. - С. 154.
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00437
© Рефератбанк, 2002 - 2024