Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код |
348659 |
Дата создания |
06 июля 2013 |
Страниц |
45
|
Мы сможем обработать ваш заказ (!) 18 ноября в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
Содержание
Введение
1История развития английской кухни и ее особенности. Характеристика блюд, кулинарных и кондитерских изделий
2Пищевая и биологическая ценность продуктов, используемых для приготовления блюд и кулинарных изделий английской кухни
3Ассортимент блюд. Особенности приготовления, оформления и правила подачи.
3.1Аппаратно-технологические (технологические) схемы производства кулинарных (кондитерских) изделий и блюд
3.2Физико-химические процессы, происходящие с пищевыми веществами при технологической обработке продуктов, их роль в формировании качества продукции
3.2.1Процессы, происходящие при тепловой обработке овощей
3.2.2Физико-химические процессы, происходящие с пищевыми веществами при технологической обработке мяса. Их роль в формировании качества продукции
4Контроль качества продукции
Заключение
Список литературы
Введение
Английская кухня
Фрагмент работы для ознакомления
3.1 Аппаратно-технологические (технологические) схемы производства кулинарных (кондитерских) изделий и блюд
Рассмотрим технологическую схему производства английского пудинга.
Этот концентрат представляет собой смесь сахара и кукурузного крахмала с добавлением вкусовых веществ и пищевых красителей.
По вкусу готового продукта и назначению десертные пудинги напоминают желейные кремы.
Промышленность выпускает шесть видов десертных пудингов. Название пудинги получают по вкусовому веществу, входящему в их состав. Так вырабатывают пудинги лимонный, апельсиновый, ванильный, миндальный, шоколадный и кофейный.
В табл. 3.1 представлены рецептуры, по которым вырабатывают пудинги десертные.
Технологическая схема производства десертных пудингов включает контрольный просев сырья, смешивание и расфасовку готовой смеси в коробочки.
Контрольный просев сахара-песка осуществляют на вибрационном просеивателе через металлотканное сито № 2-2,5.
Кукурузный крахмал, порошок какао и кофе просеивают через металлотканное сито № 0,8-1.
Подготовленные компоненты смешивают в смесительной машине, засыпая туда сахар-песок, вкусовые вещества и в последнюю очередь кукурузный крахмал. Перемешивание продолжают в течение 3-4 мин. Следует учесть, что кукурузный крахмал сильно пылит, поэтому при смешивании смесительные машины надо плотно закрывать.
Готовую смесь расфасовывают по 250 г в коробочки из картона с внутренним пакетом из пергамента на расфасовочно-упаковочном автомате АПБ.
Коробочки с продуктом укладывают в короба из гофрированного картона, короба оклеивают, оформляют бандеролью и направляют на склад готовой продукции.
Таблица 3.1 - Рецептуры, по которым вырабатывают десертные пудинги
Компоненты
«Пудинг лимонный»
«Пудинг апельсиновый»
«Пудинг ванильный»
«Пудинг миндальный»
«Пудинг шоколадный»
«Пудинг кофейный»
содержание компонентов, %
56,460
56,300
56,470
56,600
54,500
55,000
Крахмал кукурузный........
43,465
43,506
43,320
43,240
39,500
39,900
0,072
-
-
-
-
-
-
0,164
-
-
-
-
-
-
0,200
-
0,100
0,100
Масло миндальное.........
-
-
-
0,160
-
-
-
-
-
-
5,900
-
-
-
-
-
-
5,000
0,013
0,025
0,01
-
-
-
-
0,005
-
-
-
-
3.2 Физико-химические процессы, происходящие с пищевыми
веществами при технологической обработке продуктов, их роль
в формировании качества продукции
3.2.1 Процессы, происходящие при тепловой обработке овощей
При тепловой обработке овощей происходят глубокие физико-химические изменения. Некоторые из них играют положительную роль (размягчение овощей, клейстеризация крахмала и др.), улучшают внешний вид блюд (образование румяной корочки при жарке картофеля); другие процессы снижают пищевую ценность (потери витаминов, минеральных веществ и др.), вызывают изменение цвета и т.д. Кулинар должен уметь управлять происходящими процессами.
Размягчение овощей при тепловой обработке. Паренхимная ткань состоит из клеток, покрытых клеточными оболочками. Отдельные клетки соединены друг с другом срединными пластинками. Оболочки клеток и срединные пластинки придают овощам механическую прочность. В состав клеточных стенок входят: клетчатка (целлюлоза), полуклетчатка (гемицеллюлозы), протопектин, пектин и соединительнотканный белок экстенсин. При этом в средних пластинках преобладает протопектин.
При тепловой обработке клетчатка практически не изменяется. Волокна гемицеллюлоз набухают, но сохраняются. Размягчение ткани обусловлено распадом протопектина и экстенсина3.
Протопектин — полимер пектина — имеет сложную разветвленную структуру. Главные цепи его молекул состоят из остатков галактуроновых и полигалактуроновых кислот и сахара — рамнозы. Цепи галактуроновых кислот соединены друг с другом с помощью различных связей (водородных, эфирных, ангидридных, солевых мостиков), среди которых преобладают солевые мостики из двухвалентных ионов кальция и магния. При нагревании в срединных пластинках происходит ионообменная реакция: ионы кальция и магния заменяются одновалентными ионами натрия и калия.
При этом связь между отдельными цепями галактуроновых кислот разрушается. Протопектин распадается, образуется растворимый в воде пектин, и овощная ткань размягчается. Реакция эта обратима. Чтобы она проходила в правую сторону, необходимо удалять ионы кальция из сферы реакции. В растительных продуктах содержатся фитин и ряд других веществ, связывающих кальций. Однако связывание ионов кальция (магния) не происходит в кислой среде, поэтому размягчение овощей замедляется. В жесткой воде, содержащей ионы кальция и магния, этот процесс также будет проходить медленно. При повышении температуры размягчение овощей ускоряется.
В разных овощах скорость распада протопектина неодинакова. Поэтому варить можно все овощи, а жарить только те, в которых протопектин успевает превратиться в пектин, пока еще не вся влага испарилась (картофель, кабачки, помидоры, тыкву). У моркови, репы, брюквы и некоторых других овощей протопектин настолько устойчив, что они начинают подгорать раньше, чем достигнут кулинарной готовности.
Размягчение овощей связано не только с распадом протопектина, но и с гидролизом экстенсина. Содержание его при тепловой обработке овощей значительно снижается. Так, по достижении кулинарной готовности в свекле распадается около 70% экстенсина, в петрушке — примерно 40%.
Изменение крахмала. При тепловой обработке картофеля крахмальные зерна, находящиеся внутри клеток, клейстеризуются за счет клеточного сока. При этом клетки не разрушаются и клейстер остается внутри них. В горячем картофеле связь между отдельными клетками ослаблена вследствие распада протопектина и экстенсина, поэтому при протирании они легко отделяются друг от друга, клетки остаются целыми, клейстер не вытекает, и шоре получается пышным.
При охлаждении связь между клетками частично восстанавливается, они с большим трудом отделяются друг от друга, оболочки их при протирании рвутся, клейстер вытекает, и пюре получается клейким.
При жарке картофеля и других крахмалосодержащих овощей поверхность нарезанных кусочков быстро обезвоживается, температура в ней поднимается выше 120°С, при этом крахмал расщепляется с образованием пиродекстринов, имеющих коричневый цвет, и продукт покрывается румяной корочкой.
Изменение Сахаров. При варке овощей (морковь, свекла и др.) часть Сахаров (ди- и моносахаридов) переходит в отвар. При жарке овощей, подпекании лука, моркови для бульонов происходит карамелизация содержащихся в них Сахаров. В результате карамелизации количество сахара в овощах уменьшается, а на поверхности появляется румяная корочка. В образовании поджаристой корочки на овощах важную роль играет также реакция меланоидинообразования, сопровождающаяся появлением темноокрашенных соединений — меланоидинов.
Изменение окраски овощей при тепловой обработке. Различную окраску овощей обусловливают пигменты (красящие вещества). При тепловой обработке окраска многих овощей изменяется.
Окраску свеклы обусловливают пигменты — бетанины (красные пигменты) и бетаксантины (желтые пигменты). От содержания и соотношения этих пигментов зависят оттенки окраски корнеплодов. Желтые пигменты почти полностью разрушаются при варке свеклы, а красные частично (12—13%) переходят в отвар, частично гидролизуются. Всего при варке разрушается около 50% бетанинов, вследствие чего окраска корнеплодов становится менее интенсивной. Степень изменения окраски свеклы зависит от ряда факторов: температуры нагревания, концентрации бетанина, рН среды, контакта с кислородом воздуха, присутствия в варочной среде ионов металлов и др. Чем выше температура нагревания, тем быстрее разрушается красный пигмент. Чем выше концентрация бетанина, тем лучше он сохраняется. Поэтому свеклу рекомендуется варить в кожуре или тушить с небольшим количеством жидкости. В кислой среде бетанин более устойчив, поэтому при варке или тушении свеклы добавляют уксус.
Овощи с белой окраской (картофель, капуста белокочанная, лук репчатый и др.) при тепловой обработке приобретают желтоватый оттенок. Это объясняется тем, что в них содержатся фенольные соединения — флавоноиды, которые образуют с сахарами гликозиды. При тепловой обработке гликозиды гидролизуются с выделением агликона, имеющего желтую окраску.
Оранжевая и красная окраска овощей обусловлена присутствием пигментов каротиноидов: каротинов — в моркови, редисе; ликопинов — в томатах; виолаксантина — в тыкве. Каротиноиды устойчивы при тепловой обработке. Они не растворимы в воде, но хорошо растворимы в жирах, на этом основан процесс извлечения их жиром при пассеровании моркови, томатов.
Зеленую окраску овощам придает пигмент хлорофилл. Он находится в хлоропластах, заключенных в цитоплазму. При тепловой обработке белки цитоплазмы свертываются, хлороп- ласты освобождаются и кислоты клеточного сока взаимодействуют с хлорофиллом. В результате образуется феофитин — вещество бурого цвета. Для сохранения зеленого цвета овощей следует соблюдать ряд правил:
варить их в большом количестве воды для уменьшения концентрации кислот;
не закрывать посуду крышкой, чтобы облегчить удаление с паром летучих кислот;
уменьшать время варки овощей, погружая их в кипящую жидкость и не переваривая.
При наличии в варочной среде ионов меди хлорофилл приобретает ярко-зеленую окраску; ионов железа — бурую; ионов олова и алюминия — серую.
При нагревании в щелочной среде хлорофилл, омыляясь, образует хлорофиллин — вещество ярко-зеленого цвета. На этом свойстве хлорофилла основано получение зеленого красителя: любую зелень (ботву, зелень петрушки и др.) измельчают, варят с добавлением питьевой соды и отжимают через ткань хлорофиллиновую пасту.
Изменение витаминной активности в овощах. В процессе тепловой обработки витамины претерпевают значительные изменения.
Витамин С. Овощи являются основным источником витамина С в питании человека. Он хорошо растворим в воде и очень неустойчив при тепловой обработке. Содержится в клетках овощей в трех формах: восстановленной (аскорбиновая кислота), окисленной (дегидроаскорбиновая кислота) и связанной (аскорбиген). Восстановленная и окисленная формы витамина С могут легко переходить одна в другую под действием ферментов (аскорбиназы — в окисленную форму, аскорбинредуктазы — в восстановленную форму). Дегидроаскорбиновая кислота по биологической ценности не уступает аскорбиновой, но гораздо легче разрушается при тепловой обработке. Поэтому при кулинарной обработке стараются инактивировать аскорбиназу, в частности, погружением овощей в кипящую воду.
Окисление витамина С происходит в присутствии кислорода. Интенсивность процесса зависит от температуры нагрева овощей и продолжительности тепловой обработки. Для уменьшения контакта с кислородом овощи варят при закрытой крышке (кроме овощей с зеленой окраской), объем емкости должен соответствовать массе отвариваемых овощей, в случае выкипания нельзя доливать холодную некипяченую воду. Чем быстрее прогреваются овощи при варке, тем меньше разрушается аскорбиновая кислота. Так, при погружении картофеля в холодную воду (при варке) разрушается 35% витамина С, в горячую лишь 7%. Чем длительнее нагрев, тем выше степень окисления витамина С. Поэтому не допускается переваривание продуктов, длительное хранение пищи, нежелателен повторный разогрев готовых блюд.
Ионы металлов, попадающие в варочную среду с водопроводной водой и со стенок посуды, являются катализаторами окисления витамина С. Наибольшим каталитическим действием обладают ионы меди. В кислой среде это действие проявляется в меньшей степени, поэтому нельзя добавлять соду для ускорения развариваемости овощей4.
Некоторые вещества, содержащиеся в пищевых продуктах, переходят в отвар и оказывают стабилизирующее действие на витамин С. К таким веществам относятся белки, аминокислоты, крахмал, витамины — А, Е, В , пигменты — флавоны, антоцианы, каротиноиды. Например, при варке картофеля в воде потери витамина С составляют около 30%, и при варке в мясном бульоне витамин С практически полностью сохраняется.
Чем больше общее количество аскорбиновой кислоты в продукте, тем лучше сохраняется С-витаминная активность. Этим объясняется тот факт, что в картофеле и капусте витамин С в процессе варки сохраняется лучше осенью, чем весной. Например, при варке неочищенного картофеля осенью степень разрушения витамина С не превышает 10%, весной достигает 25%.
Во время варки аскорбиновая кислота не только разрушается, но и частично переходит в отвар. Поэтому овощные отвары рекомендуется использовать при приготовлении супов и соусов. Для уменьшения потерь витамина С из продуктов желательно не промывать квашеную капусту, избегать длительного хранения очищенных овощей в воде и т.д.
При жарке овощей потери витамина С меньше, так как слой жира на поверхности продукта уменьшает контакт с кислородом воздуха.
Большие потери витамина С происходят, когда продукты подвергают неоднократным тепловым воздействиям, протирают, взбивают (при изготовлении овощных котлет, запеканок, суфле). Так, в готовых картофельных котлетах остается аскорбиновой кислоты всего 5—7% количества ее в сыром картофеле.
Витамины, группы В. При варке они частично переходят в отвар, частично разрушаются. Менее всего устойчив к нагреванию витамин В6. При варке шпината разрушается около 40% его, картофеля — 27—28%.
Тиамина и рибофлавина разрушается при варке овощей около 20%, примерно 40% остатка их переходит в отвар.
Чем больше воды для варки, тем меньше витаминов остается в продукте. Жарка и тушение овощей вызывают разрушение около 40% витамина В1
Изменение массы овощей. В процессе варки масса овощей изменяется в результате двух противоположных процессов:
вследствие набухания гемицеллюлозы и крахмала масса увеличивается;
после сливания отвара часть влаги испаряется, что приводит к уменьшению массы.
Потери массы зависят и от особенностей строения овощей.
Потери влаги определяют выход готовых изделий и поэтому предельно допустимые потери массы регламентируются нормативными документами.
По размеру потерь массы при варке все овощи можно разделить на две группы: первая — потери до 10% (кольраби, цветная капуста, капуста белокочанная, репа, петрушка, свекла, морковь, картофель), вторая — потери до 50% (шпинат, щавель, ботва свеклы, лук репчатый, кабачки, патиссоны).
Не трудно заметить, что наибольшие потери массы у листовых овощей и плодовых: первые имеют большую поверхность, вторые содержат в паренхимной ткани много воздушных включений в виде мелких пузырьков. Воздух, содержащийся в пузырьках, при нагревании расширяется и при температуре 72—75°С механически разрушает клеточные стенки, вследствие чего из тканей начинает интенсивно выделяться влага.
При варке неочищенных овощей растворимые вещества практически полностью сохраняются. При варке очищенных корнеплодов (моркови, свеклы и др.) в воду переходит 20— 25% содержащихся в них веществ, главным образом Сахаров и минеральных веществ. Значительно снижается содержание соединений калия, натрия, магния и фосфора. При добавлении поваренной соли потери ряда минеральных веществ уменьшаются, поэтому овощи (за исключением моркови и свеклы, содержащих значительное количество Сахаров) закладывают в подсоленную воду.
При варке потери растворимых веществ картофеля примерно в два раза меньше, чем корнеплодов. Это объясняется тем, что часть растворимых веществ адсорбируется клейстеризованным крахмалом.
Потери растворимых веществ при варке капусты достигают 1/3 всех сухих веществ.
Нормы потерь массы при припускании большинства полуфабрикатов из овощей не отличаются от норм потерь массы их при варке в воде (морковь, свекла, репа, тыква нарезанные). Количество растворимых веществ, которое переходит в жидкость при припускании (тушении), не относят к потерям, так как припущенные и тушеные овощи отпускают вместе с жидкостью.
При жарке масса овощей уменьшается в основном вследствие испарения влаги. Потери влаги зависят от характера ее связи со структурными элементами овощной ткани, поверхности изделия, температуры и продолжительности жарки и т.д.
Уменьшение массы овощей при жарке колеблется от 17 до 60% и зависит от вида овощей, размера и формы нарезки, способа жарки. Количество испарившейся влаги несколько больше, чем потери массы, так как они частично компенсируются поглощенным жиром. Потери растворимых веществ при жарке овощей очень малы по сравнению с потерями их при варке и припускании и практически не влияют на уменьшение массы.
Влияние различных факторов на потери массы овощей при жарке рассмотрим на примере картофеля. При жарке масса сырого картофеля уменьшается на 31%, а предварительно сваренного — на 17%. Это объясняется тем, что при варке картофеля влага связывается крахмалом в процессе его клейстеризации, вследствие чего испарение ее замедляется, увеличивается поглощение жира.
При жарке картофеля (сырой, нарезанный брусочками) основным способом теряется 31% его массы, а при жарке во фритюре — 50%. Это объясняется тем, что при обжаривании во фритюре испарение влаги происходит одновременно по всей поверхности.
Влияние удельной поверхности продукта на потери его массы в зависимости от формы нарезки можно проследить на примере жарки картофеля во фритюре: брусочки теряют 50% массы, соломка — 60, тонкие ломтики (чипсы) — 66%.
Специфические вкус и аромат жареным овощам придают летучие и растворимые вещества, образующиеся в корочке в процессе карамелизации, реакции меланоидинообразования и других изменений белков, жиров и углеводов.
3.2.2 Физико-химические процессы, происходящие с пищевыми
веществами при технологической обработке мяса. Их роль
в формировании качества продукции
В состав мяса входят белки, жиры, углеводы, вода, минеральные и другие вещества. Содержание этих веществ зависит от вида, породы, пола, возраста, упитанности животных. При тепловой обработке происходят: размягчение продукта, изменения формы, объема, массы, цвета, пищевой ценности, структурно-механических характеристик, а также формирование вкуса и аромата. Характер происходящих изменений зависит в основном от температуры и продолжительности тепловой обработки.
Белков в мясе содержится 11,4-20,2%. Основная часть белков мяса - белки полноценные. К ним относятся миозин, актин, миоген, миоальбумин, миоглобин, глобулин. Миоген, миоальбумин растворяются в воде, миозин, глобулин - в солевых растворах. Миоглобин имеет пурпурно-красную окраску и обусловливает окраску мышечной ткани. Чем больше миоглобина в мышцах, тем темнее их окраска. С окисью азота миоглобин образует азооксимиоглобин, который имеет красный цвет, сохраняющийся после термической обработки. Это используется в колбасном производстве для сохранения цвета продукта.
Из неполноценных белков в мясе содержится коллаген, эластин. Это соединительно-тканные белки, придающие мясу жесткость. Коллаген при нагревании с водой переходит в глютин, мясо размягчается, а глютин, растворяясь в горячей воде, придает вязкость раствору, который при охлаждении застывает, превращаясь в студень.
Изменение мышечных белков. Тепловая денатурация мышечных белков начинается при 30 - 35° С. При 65° С денатурирует около 90% всех мышечных белков, но даже при 100° С часть их остается растворимыми.
Наиболее лабилен основной мышечный белок - миозин. При температуре немногим выше 40° С он практически полностью денатурирует.
Миоглобин, придающий сырому мясу красный цвет, при денатурации подвергается деструкции. Денатурация миоглобина сопровождается окислением ионов двухвалентного железа, входящего в активную группу молекулы этого белка (гем), до трехвалентного. При этом исчезает красная окраска мяса, образуется гемин серо-коричневого цвета. Полная денатурация миоглобина наступает при 80° С. Поэтому по изменению окраски мяса можно судить о степени его прогрева.
Так, при температуре 60° С окраска говядины ярко красная, свыше 60 - 70° С - розовая, при 70 - 80°С и выше - серовато-коричневая, свойственная мясу, доведенному до кулинарной готовности.
Причины аномальной (розоватой) окраски мяса, подвергнутого достаточной тепловой обработке, могут быть следующими: использование мяса сомнительной свежести, в котором накапливается аммиак; свежие мясные продукты в нарушении требований технологии разогреты или сварены в хранившемся уже бульоне; повышенное содержание нитратов в мясе.
Список литературы
Список литературы
1.Артемова Е.Н., Иванникова Т.В. Теоретические основы технологии продуктов питания. Уч. пособие. М.: МО РФ, 2002. - 119 с.
2.Витковская С. Особенности кухни народов мира. – Москва: Астрель, 2003. –321 с.
3.Кудрова Н.В., Смирнова Л.В. Методика проведения сертификации продовольственных товаров. М.: МГУК, 2002. - 68 с.
4.Технология продукции общественного питания в 2-х т. Т.1 Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке/А.С.Ратушный, В.И.Хлебникова, Б.А.Баранов и др., Под ред. Д-ра техн. наук, проф. А.С.Ратушного. – М.: Мир, 2004. – 351 с.: ил.
5.Фурс И.Н. Технология производства продукции общественного питания: Учеб. Пособие / И.Н. Фурс. - Мн.: Новое знание, 2002. - 799с.: ил.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00481