Вход

Статистический анализ рядов распределения. Проверка гипотезы о законе распределения

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 337582
Дата создания 07 июля 2013
Страниц 35
Покупка готовых работ временно недоступна.
1 310руб.

Содержание

ВВЕДЕНИЕ
1. ТАБЛИЧНОЕ И ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ВАРИАЦИОННОГО РЯДА
2. ХАРАКТЕРИСТИКА
ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ РАСПРЕДЕЛЕНИЯ
3. ОЦЕНКА ВАРИАЦИИ ИЗУЧАЕМОГО ПРИЗНАКА
4. ХАРАКТЕРИСТИКА СТРУКТУРЫ РАСПРЕДЕЛЕНИЯ
5. ХАРАКТЕРИСТИКА ФОРМЫ РАСПРЕДЕЛЕНИЯ
6. СГЛАЖИВАНИЕ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ.
ПРОВЕРКА ГИПОТЕЗЫ О ЗАКОНЕ РАСПРЕДЕЛЕНИЯ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


Введение

Статистический анализ рядов распределения. Проверка гипотезы о законе распределения

Фрагмент работы для ознакомления

В курсовой работе были проанализированы данные о распределении регионов России по количеству легковых автомобилей на 1000 человек населения за 2005 г. Для удобства анализа данные были представлены в виде группировочных таблиц с количеством интервалов n=8, 10 и 13. Наиболее пригодной для анализа оказалась группировочная таблица с восемью интервалами.
Также для удобства анализа вариационного ряда используется графическое представление. В работе были использованы такие виды графиков, как полигон, кумулята и гистограмма. Полигон, построенный на основе абсолютных частот, показывает форму распределения. Из рисунка видно, что распределение имеет одну вершину, форма его симметрична и довольно крута.
Также с помощью графика можно определить модальный интервал (140,8–171,17). Гистограмма позволяетсделать такие же выводы.
Кумулята показывает накопленные частоты распределения (абсолютные или относительные). С помощью кумуляты легко определить медианный интервал распределения (140,8–171,17) – это интервал, на котором кумулята переваливает за середину распределения, т.е. за 40 (для абсолютных частот) или 50% (для относительных частот). Так как модальный и медианный интервалы распределения совпадают, то распределение симметрично.
Центральная тенденция распределения характеризуется такими показателями, как среднее арифметическое значение, мода и медиана. Все показатели были определены с помощью программы Statistica по исходному ряду данных и вручную по сгруппированным данным. Среднее арифметическое значение вариационного ряда составило 153,055 (по исходным данным) и 152,95 (по группировочной таблице).
Медиана – это величина признака, делящая распределение на две равные части. По исходным данным медиана составила 153,45, а по сгруппированным данным – 154,09.
Мода – это значение признака с наибольшей частотой. Ее значение составило 155,14. Очевидно, что и среднее арифметическое, и медиана, и мода принадлежат одному интервалу и незначительно отличаются по значениям. Это свидетельствует о симметричности распределения относительно центра.
Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям, характеризующим вариацию распределения, относятся размах вариации, дисперсия и среднее квадратическое отклонение и коэффициент вариации.
Размах вариации показывает амплитуду вариации и определяется как разница между максимальным и минимальным значением распределения и составляет 212,6.
Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины. Дисперсия, рассчитанная по исходным данным, составила 1730,257, а по сгруппированным – 1973,99. Более удобным для анализа показателем является среднее квадратическое отклонение, которое определяется как корень из дисперсии. Среднее квадратическое отклонение, рассчитанное на основании исходного ряда распределения, равно 41,596, а отклонение, определенное по сгруппированным данным, – 44,43. Оно показывает, что значение признака отклоняется от среднего арифметического значения в среднем на 41,596.
Коэффициент вариации определяется как отношение среднего квадратического отклонения к среднему арифметическому значению. Этот показатель используют для характеристики однородности совокупности. Значение коэффициента вариации для исследуемого ряда данных составило 27,18%. Поскольку рассчитанное значение коэффициента меньше 33%, то данная совокупность является количественно однородной.

Список литературы

1.Боровиков В.П., STATISTICA. Искусство анализа данных на компьютере: для профессионалов / В. П. Боровиков. – 2-е изд. – СПб. : – 2003. – 688 с.
2.Венецкий И.Г., Основные математико-статистические понятия и формулы в экономическом анализе. Справочник / И.Г. Венецкий, В.И. Венецкая. – 2-е изд., перераб. и доп. – М. : Статистика, 1979. – 477 с.
3.Гмурнан В.Э. Теория вероятностей и математическая статистика: Учеб. пособие. – М.: Высш. шк., 2003. – 479 с.
4.Гусаров В.М. Статистика: Учеб. пособие для вузов. – М.: ЮНИТИ-ДАНА, 2003. – 463 с.
5.Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник / Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 656 с.
6.Закс Л., Статистическое оценивание: Пер. с нем / Л. Закс. – М.: Статистика, 1976. – 597 с.
7.Н.В. Куприенко Статистика. Методы анализа распределений. Выборочное наблюдение. 3-е изд. : учеб. пособие. / Н.В. Куприенко, О.А. Пономарева, Д.В. Тихонов. – СПб.: Изд-во Политехн. ун-та, 2009. – 138 с.
8.Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник. / Под ред. А.А. Спирина, О.Э. Башиной. – М.: Финансы и статистика, 1996. – 296 с.
9.Общая теория статистики: учеб. / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. – М.: ИНФРА-М, 2002. – 416 с.
10.Орлов А.И. Прикладная статистика. Учебник. / А.И. Орлов. – М.: Издательство «Экзамен», 2004. – 656 с.
11.Регионы России. Социально-экономические показатели. 2006: Стат.сб. М., 2007.
12.Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005. – 80 с.
13.Теория статистики.: учеб. /Под ред. Р.А. Шмойловой. – М.: Финансы и статистика, 2005. – 560 с.
14.Теория статистики: учеб. / Под ред. проф. Г.Л. Громыко. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2006. – 476 с.
15.Экономическая статистика: Учебник. / Под ред. Ю.Н. Иванова. – М.: ИНФРА-М, 2004. – 480 с.



Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00435
© Рефератбанк, 2002 - 2025