Вход

Экспертные методы принятия решений

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 306647
Дата создания 08 июля 2013
Страниц 31
Мы сможем обработать ваш заказ (!) 18 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 310руб.
КУПИТЬ

Содержание

ВВЕДЕНИЕ
1. Основные проблемы теории и практики экспертных
оценок в принятии решений
1.1. Сущность и сфера использования экспертных методов
принятия решений
1.2. Организация и работа экспертной комиссии
1.3. Стадии экспертного опроса и подбор экспертов
2. Экспертные методы принятия решений
2.1. Сущность и основные экспертные методы принятия решений
2. 2. Репрезентативная теория измерений
3. Выбор одного из восьми проектов
ЗАКЛЮЧЕНИЕ
Список использованной литературы:

Введение

Экспертные методы принятия решений

Фрагмент работы для ознакомления

в шкале наименований в качестве среднего годится только мода;
из всех средних по Коши в порядковой шкале в качестве средних можно использовать только члены вариационного ряда (порядковые статистики), в частности, медиану (при нечетном объеме выборки; при четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану), но не среднее арифметическое, среднее геометрическое и т.д.;
в шкалах интервалов из всех средних по Колмогорову можно применять только среднее арифметическое;
в шкале отношений из всех средних по Колмогорову устойчивыми относительно сравнения являются только степенные средние и среднее геометрическое.
Приведем численный пример, показывающий некорректность использования среднегоарифметического f(X1, X2) = (X1+X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1 = 6, Z2 = 8. Тогда f(Y1, Y2) = 6, что меньше, чем f(Z1, Z2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Тогда f(g(Y1), g(Y2)) = 50, что больше, чем f(g(Z1), g(Z2)) = 7. Как видим, в результате преобразования шкалы упорядоченность средних изменилась.
В настоящее время распространены экспертные, маркетинговые, квалиметрические, социологические и др. опросы, в которых опрашиваемых просят выставить баллы объектам, изделиям, технологическим процессам, предприятиям, проектам, заявкам на выполнение научно-исследовательских работ, идеям, проблемам, программам, политикам и т.п., а затем рассчитывают средние баллы и рассматривают их как интегральные оценки, выставленные коллективом опрошенных. Какими формулами пользоваться для вычисления средних величин? Обычно применяют среднее арифметическое. Мы уже более 25 лет знаем, что такой способ некорректен, поскольку баллы обычно измерены в порядковой шкале (см. выше). Обоснованным является использование медиан в качестве средних баллов. Однако полностью игнорировать средние арифметические нецелесообразно из-за их распространенности. Поэтому целесообразно использовать одновременно оба метода - и метод средних арифметических рангов (баллов), и методов медианных рангов. Такая рекомендация находится в согласии с концепцией устойчивости, рекомендующей использовать различные методы для обработки одних и тех же данных с целью выделить выводы, получаемые одновременно при всех методах. Такие выводы, видимо, соответствуют действительности, в то время как заключения, меняющиеся от метода к методу, зависят от субъективизма исследователя, выбирающего метод.
3. Выбор одного из восьми проектов
Рассмотрим конкретный пример применения только что сформулированного подхода.1
Анализировались восемь проектов, предлагаемых для включения в план стратегического развития фирмы, обозначенные следующим образом: Д, Л, М-К, Б, Г-Б, Сол, Стеф, К (по фамилиям менеджеров, предложивших их для рассмотрения). Все проекты были направлены 12 экспертам, назначенным Правлением фирмы. В приведенной ниже табл.1 приведены ранги восьми проектов, присвоенные им каждым из 12 экспертов в соответствии с их представлением о целесообразности включения проекта в стратегический план фирмы
Таблица 1
Ранги 8 проектов по степени привлекательности
для включения в план стратегического развития фирмы
№ эксперта
Д
Л
М-К
Б
Г-Б
Сол
Стеф
К
1
5
3
1
2
8
4
6
7
2
5
4
3
1
8
2
6
7
3
1
7
5
4
8
2
3
6
4
6
4
2,5
2,5
8
1
7
5
5
8
2
4
6
3
5
1
7
6
5
6
4
3
2
1
7
8
7
6
1
2
3
5
4
8
7
8
5
1
3
2
7
4
6
8
9
6
1
3
2
5
4
7
8
10
5
3
2
1
8
4
6
7
11
7
1
3
2
6
4
5
8
12
1
6
5
3
8
4
2
7
Примечание. (ранг 1 - самый лучший проект, который обязательно надо реализовать, ранг 2 - второй по привлекательности проект, ... , ранг 8 - наиболее сомнительный проект, который реализовывать стоит лишь в последнюю очередь).Эксперт № 4 считает, что проекты М-К и Б равноценны, но уступают лишь одному проекту - проекту Сол. Поэтому проекты М-К и Б должны были бы стоять на втором и третьем местах и получить баллы 2 и 3. Поскольку они равноценны, то получают средний балл (2+3)/ 2 = 5/ 2 = 2,5.
Анализируя результаты работы экспертов, члены Правления фирмы были вынуждены констатировать, что полного согласия между экспертами нет, а потому данные, приведенные в табл.1, следует подвергнуть более тщательному математическому анализу.
Сначала был применен метод средних арифметических рангов. Для этого прежде всего была подсчитана сумма рангов, присвоенных проектам. Затем эта сумма была разделена на число экспертов, в результате рассчитан средний арифметический ранг (именно эта операция дала название методу). По средним рангам строится итоговая ранжировка, исходя из принципа - чем меньше средний ранг, чем лучше проект. Наименьший средний ранг, равный 2,625, у проекта Б, - следовательно, в итоговой ранжировке он получает ранг 1. Следующая по величине сумма, равная 3,125, у проекта М-К, - и он получает итоговый ранг 2. Проекты Л и Сол имеют одинаковые суммы (равные 3,25), значит, с точки зрения экспертов они равноценны (при рассматриваемом способе сведения вместе мнений экспертов), а потому они должны бы стоять на 3 и 4 местах и получают средний балл (3+4) /2 = 3,5. Дальнейшие результаты приведены в табл.4 ниже.
Итак, ранжировка по суммам рангов (или, что то же, по средним арифметическим рангам) имеет вид:
Б < М-К < {Л, Сол} < Д < Стеф < Г-Б < К . (3)
Здесь запись типа "А<Б" означает, что проект А предшествует проекту Б (т.е. проект А лучше проекта Б). Поскольку модели Л и Сол получили одинаковую сумму баллов, то по рассматриваемому методу они эквивалентны, а потому объединены в группу (в фигурных скобках). В терминологии математической статистики ранжировка (3) имеет одну связь.
Значит, наука сказала свое слово, итог расчетов - ранжировка (1), и на ее основе предстоит принимать решение? Но тут наиболее знакомый с современной эконометрикой член Правления вспомнил то, о чем говорилось в предыдущем разделе. Он вспомнил, что ответы экспертов измерены в порядковой шкале и что для них неправомерно проводить усреднение методом средних арифметических. Надо использовать метод медиан.
Что это значит? Надо взять ответы экспертов, соответствующие одному из проектов, например, проекту Д. Это ранги 5, 5, 1, 6, 8, 5, 6, 5, 6, 5, 7, 1. Затем их надо расположить в порядке неубывания. Получим: 1, 1, 5, 5, 5, 5, 5, 6, 6, 6, 7, 8. На центральных местах - шестом и седьмом - стоят 5 и 5. Следовательно, медиана равна 5.
Результаты подобных расчетов представлены в таблице 2.
Таблица 2
Результаты расчетов по методу средних арифметических
и методу медиан для данных, приведенных в табл.1.
Д
Л
М-К
Б
Г-Б
Сол
Стеф
К

Список литературы

1.Глущенко В.В., Глущенко И.И.Разработка управленческого решения. Прогнозирование - планирование. Теория проектирования экспертов: Учебник для ВУЗов. - М.:ЮНИТИ-ДАНА, 2000.
2.Заичкин Н.И. Экономико-математические модели и методы принятия решений в управлении производством. Уч.пос.-М.:ГУУ, 2000.-107 с.
3.Карданская Н.Л. Принятие управленческого решения. Учебник для вузов.-М.:ЮНИТИ, 1999.-407 с.
4.Литвак Б.Г. Управленческие решения. Учебник. - М.: 1998.
5.Менеджмент. Учебное пособие. - М.: Знание, 1999.
6.Мескон М.Х., Альберт М., Хедоури Ф. Основы менеджмента / Пер. с англ. - М.: ДЕЛО, 2000.
7.Науман Э. Принять решение, но как? - М.: Мир, 1987. - 198 с.
8.Орлов А.И. Принятие решений в стратегическом менеджменте. – Журнал «Современное управление». 2000. No.9. С.9-29.
9.Орлов А.И.Современная прикладная статистика. - Ж-л "Заводская лаборатория". 1998. Т. 64. № 3. С.52-60.
10.Орлов А.И. Теория принятия решений с позиций менеджмента. – Журнал «Современное управление». 2000. No.8. С.23-42.
11.Смирнов Э.А. Разработка управленческих решений: Учебник для вузов. - М.: ЮНИТИ-ДАНА, 2000.
12.Фатхутдинов Р.А. Управленческие решения: Учебник. 4-е изд., перераб. и доп. - М.: ИНФРА - М. - 2001.
13.Хан Д. Планирование и контроль: концепция контроллинга / Пер. с нем. - М.: Финансы и статистика, 1997. - 800 с.
14.Цыгичко В.Н. Руководителю - о принятии решений. - М.: ИНФРА -М, 1996.
15.Шмален Г. Основы и проблемы экономики предприятия. - М.: Финансы и статистика, 1996. - 512 с.
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00459
© Рефератбанк, 2002 - 2024