Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код |
206282 |
Дата создания |
08 мая 2017 |
Страниц |
27
|
Мы сможем обработать ваш заказ (!) 23 декабря в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Описание
-
...
Содержание
-
Введение
-
Фрагмент работы для ознакомления
0228 0.0470 0.0251 0.0442 0.0662 0.0163 siblings | -0.2630 0.0416 -0.0182 -0.2120 -0.2667 -0.1622 -0.1931 -0.1552 -0.2366 ethblack | -0.0256 0.0501 0.0072 -0.2812 -0.3229 -0.2236 -0.2022 -0.2510 -0.2995 ethhisp | -0.0481 -0.0205 -0.0305 -0.1739 -0.1832 -0.1550 -0.1162 -0.0438 -0.1900 ethwhite | 0.0535 -0.0233 0.0162 0.3364 0.3746 0.2794 0.2356 0.2211 0.3617 ln_height | 0.0688 -0.0029 0.7328 0.2100 0.1600 0.0510 -0.0122 -0.1155 0.1730 ln_w85 | -0.0240 0.0874 0.6190 0.0750 0.0472 -0.0561 -0.1073 -0.2052 0.0382 ln_w02 | -0.0392 0.0192 0.5339 0.0429 0.0443 -0.0370 -0.1089 -0.2100 0.0229 | ln_exp siblings ethblack ethhisp ethwhite ln_hei~t ln_w85 ln_w02-------------+------------------------------------------------------------------------ ln_exp | 1.0000 siblings | -0.0553 1.0000 ethblack | -0.1155 0.2064 1.0000 ethhisp | -0.0283 0.1559 -0.0723 1.0000 ethwhite | 0.1076 -0.2670 -0.7057 -0.6556 1.0000 ln_height | 0.0717 -0.0355 -0.0266 -0.1240 0.1082 1.0000 ln_w85 | 0.0883 -0.0029 0.0658 -0.0272 -0.0305 0.6815 1.0000 ln_w02 | 0.0573 -0.0014 0.1194 -0.0038 -0.0878 0.5893 0.8209 1.0000. correlate ln_earning ln_s ln_age male ln_asvab02 ln_asvab03 ln_asvab04 ln_asvab05 ln_asvab0> 6 asvabc ln_exp siblings ethblack ethhisp ethwhite ln_height ln_w85 ln_w02(obs=540) | ln_ear~g ln_s ln_age male ln_as~02 ln_as~03 ln_as~04 ln_as~05 ln_as~06-------------+--------------------------------------------------------------------------------- ln_earning | 1.0000 ln_s | 0.4253 1.0000 ln_age | -0.0263 -0.0082 1.0000 male | 0.2775 0.0053 -0.0157 1.0000 ln_asvab02 | 0.3990 0.4982 0.0836 0.1541 1.0000 ln_asvab03 | 0.2951 0.4784 0.1857 0.0564 0.6811 1.0000 ln_asvab04 | 0.2832 0.4570 0.1589 -0.0387 0.6483 0.7509 1.0000 ln_asvab05 | 0.2948 0.4611 0.0802 -0.1324 0.5591 0.5963 0.6127 1.0000 ln_asvab06 | 0.2005 0.3607 0.1206 -0.2746 0.4214 0.4633 0.4776 0.6503 1.0000 asvabc | 0.3905 0.5517 0.1487 0.0963 0.9376 0.8536 0.8355 0.6345 0.4934 ln_exp | 0.1029 -0.2395 0.2031 0.1060 0.0228 0.0470 0.0251 0.0442 0.0662 siblings | -0.1760 -0.2630 0.0416 -0.0182 -0.2120 -0.2667 -0.1622 -0.1931 -0.1552 ethblack | -0.0998 -0.0256 0.0501 0.0072 -0.2812 -0.3229 -0.2236 -0.2022 -0.2510 ethhisp | -0.0558 -0.0481 -0.0205 -0.0305 -0.1739 -0.1832 -0.1550 -0.1162 -0.0438 ethwhite | 0.1152 0.0535 -0.0233 0.0162 0.3364 0.3746 0.2794 0.2356 0.2211 ln_height | 0.2626 0.0688 -0.0029 0.7328 0.2100 0.1600 0.0510 -0.0122 -0.1155 ln_w85 | 0.1055 -0.0240 0.0874 0.6190 0.0750 0.0472 -0.0561 -0.1073 -0.2052 ln_w02 | 0.0533 -0.0392 0.0192 0.5339 0.0429 0.0443 -0.0370 -0.1089 -0.2100 | asvabc ln_exp siblings ethblack ethhisp ethwhite ln_hei~t ln_w85 ln_w02-------------+--------------------------------------------------------------------------------- asvabc | 1.0000 ln_exp | 0.0163 1.0000 siblings | -0.2366 -0.0553 1.0000 ethblack | -0.2995 -0.1155 0.2064 1.0000 ethhisp | -0.1900 -0.0283 0.1559 -0.0723 1.0000 ethwhite | 0.3617 0.1076 -0.2670 -0.7057 -0.6556 1.0000 ln_height | 0.1730 0.0717 -0.0355 -0.0266 -0.1240 0.1082 1.0000 ln_w85 | 0.0382 0.0883 -0.0029 0.0658 -0.0272 -0.0305 0.6815 1.0000 ln_w02 | 0.0229 0.0573 -0.0014 0.1194 -0.0038 -0.0878 0.5893 0.8209 1.0000. regress ln_earning ln_s ln_asvab02 ln_asvab03 ln_asvab04 ln_asvab05 ln_asvab06 ln_asvab06 ln_exp ln_heightnote: ln_asvab06 omitted because of collinearity Source | SS df MS Number of obs = 540-------------+------------------------------ F( 8, 531) = 28.13 Model | 56.612926 8 7.07661575 Prob > F = 0.0000 Residual | 133.562529 531 .251530186 R-squared = 0.2977-------------+------------------------------ Adj R-squared = 0.2871 Total | 190.175455 539 .352830158 Root MSE = .50153------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.192179 .1491193 7.99 0.000 .8992432 1.485115 ln_asvab02 | .6014113 .1694444 3.55 0.000 .2685478 .9342749 ln_asvab03 | -.2896428 .180193 -1.61 0.109 -.6436215 .0643359 ln_asvab04 | .0249921 .1696817 0.15 0.883 -.3083377 .3583218 ln_asvab05 | .2007069 .1680563 1.19 0.233 -.12943 .5308438 ln_asvab06 | -.0181909 .1497649 -0.12 0.903 -.3123954 .2760135 ln_asvab06 | (omitted) ln_exp | .3148063 .0695615 4.53 0.000 .1781568 .4514557 ln_height | 1.968339 .3836843 5.13 0.000 1.214614 2.722065 _cons | -11.49848 1.661351 -6.92 0.000 -14.7621 -8.234849------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_asvab03 ln_asvab04 ln_asvab05 ln_asvab06 ln_exp ln_height Source | SS df MS Number of obs = 540-------------+------------------------------ F( 8, 531) = 28.13 Model | 56.612926 8 7.07661575 Prob > F = 0.0000 Residual | 133.562529 531 .251530186 R-squared = 0.2977-------------+------------------------------ Adj R-squared = 0.2871 Total | 190.175455 539 .352830158 Root MSE = .50153------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.192179 .1491193 7.99 0.000 .8992432 1.485115 ln_asvab02 | .6014113 .1694444 3.55 0.000 .2685478 .9342749 ln_asvab03 | -.2896428 .180193 -1.61 0.109 -.6436215 .0643359 ln_asvab04 | .0249921 .1696817 0.15 0.883 -.3083377 .3583218 ln_asvab05 | .2007069 .1680563 1.19 0.233 -.12943 .5308438 ln_asvab06 | -.0181909 .1497649 -0.12 0.903 -.3123954 .2760135 ln_exp | .3148063 .0695615 4.53 0.000 .1781568 .4514557 ln_height | 1.968339 .3836843 5.13 0.000 1.214614 2.722065 _cons | -11.49848 1.661351 -6.92 0.000 -14.7621 -8.234849------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_asvab03 ln_asvab04 ln_asvab05 ln_exp ln_height Source | SS df MS Number of obs = 540-------------+------------------------------ F( 7, 532) = 32.21 Model | 56.6092151 7 8.08703073 Prob > F = 0.0000 Residual | 133.56624 532 .251064361 R-squared = 0.2977-------------+------------------------------ Adj R-squared = 0.2884 Total | 190.175455 539 .352830158 Root MSE = .50106------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.190885 .1486002 8.01 0.000 .8989697 1.4828 ln_asvab02 | .6006026 .1691567 3.55 0.000 .2683057 .9328996 ln_asvab03 | -.2909589 .1797003 -1.62 0.106 -.6439682 .0620503 ln_asvab04 | .0240833 .1693596 0.14 0.887 -.3086123 .3567789 ln_asvab05 | .1914967 .1498384 1.28 0.202 -.1028508 .4858442 ln_exp | .3141157 .0692645 4.54 0.000 .1780501 .4501813 ln_height | 1.976779 .3769909 5.24 0.000 1.236205 2.717352 _cons | -11.55181 1.600788 -7.22 0.000 -14.69645 -8.40717------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_asvab03 ln_asvab05 ln_exp ln_height Source | SS df MS Number of obs = 540-------------+------------------------------ F( 6, 533) = 37.65 Model | 56.6041382 6 9.43402303 Prob > F = 0.0000 Residual | 133.571317 533 .250602846 R-squared = 0.2976-------------+------------------------------ Adj R-squared = 0.2897 Total | 190.175455 539 .352830158 Root MSE = .5006------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.191972 .1482671 8.04 0.000 .9007121 1.483231 ln_asvab02 | .6059268 .1648093 3.68 0.000 .2821713 .9296823 ln_asvab03 | -.2786834 .1574632 -1.77 0.077 -.5880081 .0306412 ln_asvab05 | .1962073 .1459965 1.34 0.180 -.0905919 .4830064 ln_exp | .3141719 .0691997 4.54 0.000 .1782342 .4501095 ln_height | 1.970765 .3742667 5.27 0.000 1.235546 2.705984 _cons | -11.5225 1.585998 -7.27 0.000 -14.63807 -8.406921------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_asvab03 ln_exp ln_height Source | SS df MS Number of obs = 540-------------+------------------------------ F( 5, 534) = 44.75 Model | 56.1515208 5 11.2303042 Prob > F = 0.0000 Residual | 134.023934 534 .25098115 R-squared = 0.2953-------------+------------------------------ Adj R-squared = 0.2887 Total | 190.175455 539 .352830158 Root MSE = .50098------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.233605 .1451041 8.50 0.000 .9485597 1.518649 ln_asvab02 | .6562225 .160625 4.09 0.000 .340688 .9717569 ln_asvab03 | -.2116865 .1494762 -1.42 0.157 -.50532 .081947 ln_exp | .3235342 .0689001 4.70 0.000 .1881857 .4588828 ln_height | 1.880134 .3684186 5.10 0.000 1.156406 2.603861 _cons | -10.96659 1.532261 -7.16 0.000 -13.97659 -7.956587------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_exp ln_height Source | SS df MS Number of obs = 540-------------+------------------------------ F( 4, 535) = 55.33 Model | 55.6481553 4 13.9120388 Prob > F = 0.0000 Residual | 134.5273 535 .251452897 R-squared = 0.2926-------------+------------------------------ Adj R-squared = 0.2873 Total | 190.175455 539 .352830158 Root MSE = .50145------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.183721 .1408962 8.40 0.000 .9069438 1.460499 ln_asvab02 | .5293513 .133447 3.97 0.000 .267207 .7914957 ln_exp | .3125888 .0685296 4.56 0.000 .1779687 .4472088 ln_height | 1.86586 .3686267 5.06 0.000 1.141727 2.589993 _cons | -11.07606 1.531748 -7.23 0.000 -14.08504 -8.067086------------------------------------------------------------------------------. estat hettestBreusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of ln_earning chi2(1) = 14.81 Prob > chi2 = 0.0001. estat ovtestRamsey RESET test using powers of the fitted values of ln_earning Ho: model has no omitted variables F(3, 532) = 1.63 Prob > F = 0.1803. estat summarize Estimation sample regress Number of obs = 540 ------------------------------------------------------------- Variable | Mean Std. Dev. Min Max -------------+----------------------------------------------- ln_earning | 2.793873 .5939951 .756122 4.85125 ln_s | 2.598314 .1847536 1.79176 2.99573 ln_asvab02 | 3.907609 .1929522 3.43399 4.18965 ln_exp | 2.788723 .3299222 .268264 3.15536 ln_height | 4.209339 .060087 4.07754 4.34381 -------------------------------------------------------------. . predict uhat,residuals. pnorm uhat. . mvtest normality uhatTest for multivariate normality Doornik-Hansen chi2(2) = 70.899 Prob>chi2 = 0.0000. regress ln_earning ln_s ln_asvab02 ln_exp ln_height male Source | SS df MS Number of obs = 540-------------+------------------------------ F( 5, 534) = 48.25 Model | 59.1848244 5 11.8369649 Prob > F = 0.0000 Residual | 130.990631 534 .245300806 R-squared = 0.3112-------------+------------------------------ Adj R-squared = 0.3048 Total | 190.175455 539 .352830158 Root MSE = .49528------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.213665 .1393852 8.71 0.000 .9398541 1.487475 ln_asvab02 | .5149163 .1318592 3.91 0.000 .2558899 .7739428 ln_exp | .2972994 .0678057 4.38 0.000 .1641008 .4304981 ln_height | .4166802 .5274693 0.79 0.430 -.6194892 1.45285 male | .2389854 .0629396 3.80 0.000 .1153459 .3626249 _cons | -5.074227 2.187992 -2.32 0.021 -9.372355 -.7760994------------------------------------------------------------------------------. regress ln_earning ln_s ln_asvab02 ln_exp male Source | SS df MS Number of obs = 540-------------+------------------------------ F( 4, 535) = 60.20 Model | 59.0317472 4 14.7579368 Prob > F = 0.0000 Residual | 131.143708 535 .245128426 R-squared = 0.3104-------------+------------------------------ Adj R-squared = 0.3053 Total | 190.175455 539 .352830158 Root MSE = .4951------------------------------------------------------------------------------ ln_earning | Coef. Std. Err. t P>|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- ln_s | 1.216388 .1392936 8.73 0.000 .9427581 1.490017 ln_asvab02 | .526492 .1309964 4.02 0.000 .2691615 .7838224 ln_exp | .2971688 .0677817 4.38 0.000 .1640179 .4303197 male | .2749609 .0434292 6.33 0.000 .1896483 .3602736 _cons | -3.39021 .4926335 -6.88 0.000 -4.357943 -2.422477------------------------------------------------------------------------------.
Список литературы
Литература
1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Дело, 2000.
2. Доугерти К. Введение в эконометрику. М.:ИНФРА-М, 2001. – 402 с.
3. Тихомиров Н.П., Дорохина Е.Ю. Эконометрика: Учебник. М.: Издательство «Экзамен», 2007. – 512 с.
4. Эконометрика: Учебник / Под ред. Н.И. Елисеевой. - М.: Финансы и статистика, 2001.
5. Практикум по эконометрике: Учеб. пособие / Под ред. Н.И. Елисеевой. - М.: Финансы и статистика, 2001.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00472