Вход

Медико-биологические основы БЖД. Реакция организма человека на воздействие различных факторов космического полета.

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 163624
Дата создания 2007
Страниц 31
Источников 10
Мы сможем обработать ваш заказ (!) 22 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
630руб.
КУПИТЬ

Содержание

Введение
1. Физиологическое действие факторов космического полета на организм человека
1.1. Невесомость
1.1.2. Адаптация организма к состоянию невесомости
1.2. Космическое излучение
1.2.1. Биологическое действие космического
ионизирующего излучения
1.3. Действие на организм ускорений
1.4. Адаптационный синдром у космонавтов
2. Жизнеобеспечение в космическом полете
3. Меры по снижению влияния на организм факторов космического полета
Заключение
Список литературы

Фрагмент работы для ознакомления

СЖО могут быть коллективными (СЖО космических кораблей и планетных станций) и индивидуальными, например автономные СЖО, применяемые вместе со скафандрами.
  В более широком смысле к сфере СЖО иногда относят все остальные устройства и предметы, служащие для обеспечения гигиенических, бытовых, культурных и эстетических потребностей экипажа. Необходимость наиболее полного удовлетворения этих потребностей существенно возрастает с увеличением продолжительности пребывания экипажа в космосе, когда эти стороны деятельности человека могут приобретать значение жизненно важных факторов.  Принципиальная возможность регенерации всех необходимых для жизнедеятельности человека веществ основана на том, что организм выделяет в составе продуктов жизнедеятельности все те химические элементы, которые он получил в виде пищи и воды, а также поглощённый при дыхании кислород. Таким образом, практически создаётся замкнутый круговорот необходимых веществ. Регенерация пищевых веществ (из углерода углекислого газа, воды, минеральных элементов мочи и кала) может быть, в принципе, осуществлена при использовании способных к фото- или хемосинтезу автотрофных организмов. Ведутся также поисковые исследования по искусственному синтезу пищевых углеводов из углекислого газа и воды.
  При расчётах СЖО исходят из потребности человека в пище, воде и кислороде, а также из количества выводимых продуктов жизнедеятельности, что вместе составляет материальный баланс обмена веществ в организме человека (см. табл. 1).
  Таблица 1. Примерный материальный баланс обмена веществ человека
Потребление, г/чел-сут Выделение,  г/чел-сут Пища 500 Углекислый газ 930 Кислород 800 Водяные пары 840 Воды 2200 Моча 1500     Кал 230 Итого 3500 Итого 3500    Разнообразием принципиальных подходов и решений отличается система обеспечения кислородом (см. табл. 2). Приведённые в таблице методы регенерации кислорода являются лишь наиболее разработанными и не исчерпывают возможных технологических принципов регенерации. Методика и аппаратура для регенерации кислорода электролизом воды позволяет обеспечить газообмен человека с помощью установки, которая весит около 30 кг, при электрической мощности около 10 вт на 1 л кислорода. Биологическая регенерация кислорода может быть осуществлена фотосинтезирующими одноклеточными водорослями, из которых наиболее изучена хлорелла. Помимо компенсации убыли кислорода, для поддержания состава атмосферы корабля необходимо также удалять избыток углекислого газа и водяных паров. Двуокись углерода может быть удалена физическими методами (вымораживание, конденсация) и применением щелочных химических поглотителей. Более экономично использовать регенерируемые сорбенты (цеолиты, карбонаты).
Избыток водяных паров из воздуха может удаляться с помощью нерегенерируемых химических поглотителей, регенерируемых сорбентов (цеолиты), а также физическими методами — вымораживанием и конденсацией. В существующих космических кораблях часть водяных паров конденсируется на холодных поверхностях жидкостно-воздушных теплообменников, входящих в систему терморегулирования обитаемых кабин.
Таблица 2. Основные технологические принципы систем регенерации кислорода.
  Нерегенеративные системы   физические физико-химические химические Формы запасае- мого  кислорода Молекуляр-
ный кислород: газообразный, жидкий Химически связанный в форме воды Химически связанный в составе: перекисей, надперекисей и озонидов щелочных металлов, перхлоратов, перекиси водорода Способы мобили- зации запаса Ступенчатая редукция газа высокого давления: испарения сжиженного газа и редукция Электролиз воды (свободной или связанной фосфорным ангидридом) Химическое разложение кислородных соединений металлов при поглощении ими воды и углекислоты , каталитическое разложение перекиси водорода Источники энергии Внутренняя энергия сжатого или сжиженного газа Внешние источники энергии Энергия экзотермических реакций   Регенеративные системы   Физико-химические Биологические Источники кислорода Углекислый газ и вода, выделяемые человеком как продукты окисления пищевых веществ Углекислый газ и вода, выделяемые человеком как продукты окисления пищевых веществ Методы регенера-
ции Электролиз воды: прямое восстановление углекислого газа водородом до углерода и воды с последующим электролизом воды, восстановление углекислого газа водородом до метана  (или окиси углерода) и воды с последующим электролизом воды Фотосинтез зеленых растений, хемосинтез автотрофных бактерий (напр., водородоокисляющих) Форма потребляе-
мой энергии Тепловая, электрическая Для фотосинтеза –  световая, для хемосинтеза – электрическая (для получения водорода)  
  Система водообеспечения основывается на запасах воды. Разработаны различные физико-химические методы регенерации воды из конденсата мочи и атмосферной влаги. Конденсат атмосферных паров достаточно эффективно очищается от неизбежных органических примесей каталитическим окислением, а также с помощью ионообменных смол и углей. В наиболее разработанных методах регенерации воды из мочи используются режимы испарения при различных давлении и температуре, с последующим каталитическим окислением загрязняющих примесей в паровой фазе и очисткой получаемого конденсата сорбентами. Данные методы позволяют регенерировать большую часть потребляемой воды, а при дальнейшем их совершенствовании — добиться практически замкнутого цикла её регенерации.
  В отличие от предыдущих систем, обеспечение пищей не имеет ближайших перспектив перехода к регенеративным системам. Запасы пищи в космическом корабле состоят из продуктов и готовых блюд, консервированных в их естественном состоянии или в обезвоженном виде. Регенерация пищевых веществ возможна на основе использования фотосинтезирующих зелёных растений. Поскольку при этом также решается задача поглощения углекислого газа и регенерации воды, то возможно создание СЖО по типу закрытой экологической системы, основанной на замкнутом биологическом круговороте ограниченного количества вещества. Нужные для человека вещества непрерывно воссоздаются в такой системе благодаря жизнедеятельности растений, животных и микроорганизмов. В результате такой организации материально-энергетических отношений между элементами системы возникает новое качество — целостная система высшего порядка, обладающая свойствами закрытой термодинамической системы. Такая система в принципе способна к автономному существованию без поступления вещества извне, насколько это позволит степень согласованности входных и выходных характеристик смежных звеньев системы.
По последним данным, для обеспечения нормальной жизнедеятельности и работоспособности одного члена экипажа космического корабля в сутки, ориентировочно, требуется: 640 г полностью усвояемой пищи (сухой массы), 2200 г воды, 882 г кислорода, 2 г солей, витаминов и других дополнительных факторов питания.
3. Меры по снижению влияния на организм факторов космического полета
Для защиты человека от неблагоприятного воздействия некоторых факторов космического пространства и космического полёта необходимо изучить их биологическое действие, что осуществляется воспроизведением их в лабораторных условиях на специальных установках и стендах (центрифуги, вибростенды, барокамеры, ядерные ускорители). Однако в наземных условиях воспроизвести длительное состояние невесомости, воздействие тяжёлых ядер космического излучения и т. п. пока не удаётся. Для решения ряда теоретических и практических задач космической медицины широко применяют лабораторные методы моделирования невесомости, в том числе ограничение мышечной активности, лишение человека привычной опоры по вертикальной оси тела, снижение гидростатического давления крови, что достигается пребыванием человека в горизонтальном положении или под углом (голова ниже ног), длительным непрерывным постельным режимом или погружением человека на несколько часов или суток в жидкую (так называемую иммерсионную) среду.
Закономерности, устанавливаемые исследованиями по космической физиологии, служат основой для биологического и медицинского прогнозирования, в том числе для разработки оптимального режима труда и отдыха, сна, питания и быта космонавтов. Космическая физиология изыскивает также пути и средства повышения и поддержания устойчивости организма в условиях космического полёта (разработка рациональных комплексов физических упражнений, применение некоторых профилактических, в том числе и фармакологических средств и т. д.). Данные космической физиологии учитываются не только при отборе космонавтов и разработке системы их тренировки, но и для решения некоторых проблем физиологии организма в обычных (земных) условиях.
  По мере совершенствования космической техники большое значение приобретает участие космической медицины в осуществлении медицинской части программы отбора и подготовки космонавтов. Серьёзной проблемой является изучение влияния на организм человека длительного пребывания в состоянии невесомости во время полёта и проблема реадаптации организма к нормальной гравитации после возвращения экипажа на Землю. Разработаны комплексы физических упражнений, препятствующих развитию детренированности сердечно-сосудистой системы, созданы костюм для космонавтов, обеспечивающий постоянную нагрузку на определённые группы мышц при ограниченной двигательной активности, аппаратура для приложения отрицательного давления на нижнюю половину тела, что способствует сохранению ортостатической переносимости после воздействия факторов космического полёта. Вопрос создания искусственной гравитации на борту космического корабля ещё не имеет практического решения. Требуют своего дальнейшего изучения такие вопросы, как обмен веществ в условиях космического полёта, изменение функции сердечно-сосудистой системы, обмен электролитов (в т. ч. калия и кальция) и т. п.
  Серьёзной проблемой является защита экипажа космического корабля от действия космического излучения. Биологическое действие космических лучей изучено недостаточно, тем более в сочетании с перегрузками, вибрацией, колебаниями барометрического давления, возможным изменением состава газовой среды в кабине космического корабля и скафандре, а также другими неблагоприятными факторами полёта.
В ходе опытов в условиях, близких к космическому полёту, изучались возможности создания необходимых условий для жизни животных при полётах в герметичных кабинах (или в специальных скафандрах в негерметичных кабинах), разрабатывались средства и методы, обеспечивающие безопасность полёта, катапультирования и парашютирования с больших высот, изучалось биологическое действие первичного космического излучения.
Заключение
В данной курсовой работе были рассмотрены наиболее значимые факторы космического полета (космическое ионизирующее излучение, невесомость, ускорение), влияния условий и факторов космического полёта на организм человека, адаптивные реакции организма на действие этих факторов, указаны соответствующие профилактические меры и средства, а также подробно рассмотрены системы жизнеобеспечения, физиолого-гигиенические требования к системам жизнеобеспечения космических кораблей.
В условиях космоса определяющим специфическим фактором является невесомость; в совокупности с другими факторами космического полета невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. При подготовке и проведении дальнейших экофизиологических и экобиологических исследований в космических полётах основное внимание должно быть уделено изучению влияния невесомости на внутриклеточные процессы, биологическим эффектам тяжёлых частиц с большим зарядом, суточной ритмике физиологических и биологических процессов, комбинированным воздействиям ряда факторов космического полёта.
Очевидно, что основные перспективы дальнейших исследований в области космической биологии и медицины связаны с необходимостью:
- углубления знаний относительно механизмов приспособления человека, к необычным условиям космического полета;
- совершенствования средств и методов стабилизации, управления состоянием экипажа и среды обитания, профилактики возможных нарушений и лечения заболеваний, защиты от вероятных радиационных поражений, повышения безопасности и эффективности космических полетов;
- разработки фундаментальных проблем космической медицины, гравитационной биологии, экологии;
- использования результатов космических исследований в народном хозяйстве и здравоохранении.
На сегодняшний момент важнейшей проблемой космической медицины и космической биологии является разработка биологических основ и принципов обеспечения нормальной жизнедеятельности человека в условиях длительного пребывания в космосе. Лишь на этой основе может быть создана эффективная система жизнеобеспечения в космическом полете.
Список литературы:
1. Проблемы космической биологии, т. 5—7, Л. — М., 1967; Космическая биология и медицина, М., 1966.
2. Медико-биологические исследования в невесомости, М., 1968; Физиология в космосе, пер. с англ., М., 1972.
3. Газенко О. Г., Космическая биология и медицина, в кн.: Успехи СССР в исследовании космического пространства, М., 1968, С.321—70.
4. Краткий справочник по космической биологии и медицине, под ред. А. И. Бурназяна [и др.], М., 1967; Ларин В. В., Смирнов К. В., Гуровский Н. Н., Советское здравоохранение и космическая медицина, в кн.: Авиакосмическая медицина, сб. 2, М., 1968.
5. Вернов С. Н., Вакулов П. В., Логачев Ю. И., Радиационные пояса Земли, в сборнике: Успехи СССР в исследовании космического пространства, М., 1968, с. 106.
6. Космическая физика, пер. с англ., М., 1966.
7. Радиационный пояс и магнитосфера, пер. с англ., М., 1972.
8. Измерение радиации в космосе, М., 1972.
9. Газенко О. Г., Парфенов Г. П., Результаты и перспективы исследований в области космической генетики, «Космическая биология и медицина», 1967, т. 1, № 5.
10. "Аэрокосмический курьер", Валерий Богомолов и Георгий Самарин, №3, 2000, стр. 28-29.
2

Список литературы [ всего 10]

1. Проблемы космической биологии, т. 5—7, Л. — М., 1967; Космическая биология и медицина, М., 1966.
2. Медико-биологические исследования в невесомости, М., 1968; Физиология в космосе, пер. с англ., М., 1972.
3. Газенко О. Г., Космическая биология и медицина, в кн.: Успехи СССР в исследовании космического пространства, М., 1968, С.321—70.
4. Краткий справочник по космической биологии и медицине, под ред. А. И. Бурназяна [и др.], М., 1967; Ларин В. В., Смирнов К. В., Гуровский Н. Н., Советское здравоохранение и космическая медицина, в кн.: Авиакосмическая медицина, сб. 2, М., 1968.
5. Вернов С. Н., Вакулов П. В., Логачев Ю. И., Радиационные пояса Земли, в сборнике: Успехи СССР в исследовании космического пространства, М., 1968, с. 106.
6. Космическая физика, пер. с англ., М., 1966.
7. Радиационный пояс и магнитосфера, пер. с англ., М., 1972.
8. Измерение радиации в космосе, М., 1972.
9. Газенко О. Г., Парфенов Г. П., Результаты и перспективы исследований в области космической генетики, «Космическая биология и медицина», 1967, т. 1, № 5.
10. "Аэрокосмический курьер", Валерий Богомолов и Георгий Самарин, №3, 2000, стр. 28-29.
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00537
© Рефератбанк, 2002 - 2024