Вход

Генетика - наука о наследственности

Доклад по биологии
Дата создания: 2011
Язык доклада: Русский
Word, docx, 20 кб
Доклад можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу

Генетика-наука о наследственности и изменчивости организмов. Генетика- дисциплина, изучающая механизмы и закономерности наследственности и изменчивости организмов, методы управления этими процессами. Она призвана раскрыть законы воспроизведения живого по поколениям, появление у организмов новых свойств, законы индивидуального развития особи и материальной основы исторических преобразований организмов в процессе эволюции. Первые две задачи решают теория гена и теория мутаций. Выяснение сущности воспроизведения для конкретного разнообразия форм жизни требует изучения наследственности у представителей, находящихся на разных ступенях эволюционного развития. Объектами генетики являются вирусы , бактерии, грибы , растения , животные и человек. На фоне видовой и другой специфики в явлениях наследственности для всех живых существ обнаруживаются общие законы. Их существование показывает единство органического мира. История генетики начинается с 1900 года, когда независимо друг от друга Корренс, Герман и де Фриз открыли и сформулировали законы наследования признаков, когда была переиздана работа Г. Менделя УОпыты над растительными гибридамиФ. С того времени генетика в своем развитии прошла три хорошо очерченных этапа- эпоха Классической генетики (1900-1930), эпоха неоклассицизма (1930-1953) и эпоха синтетической генетики, которая началась в 1953 году. На первом этапе складывался язык генетики, разрабатывались методики исследования, были обоснованы фундаментальные положения, открыты основные законы. В эпоху неоклассицизма стало возможным вмешательство в механизм изменчивости, дальнейшее развитие получило изучение гена и хромосом, разрабатывается теория искусственного мутагенеза, , что позволило генетике из теоритической дисциплины перейти к прикладной. Новый этап в развитии генетики стал возможным благодаря расшифровке структуры УзолотойФ молекулы ДНК в 1953 г. Дж. Уотсоном и Ф.Криком. Генетика переходит на молекулярный уровень исследований. Стало возможным расшифровать структуру гена , определить материальные основы и механизмы наследственности и изменчивости. Генетика научилась влиять на эти процессы, направлять их в нужное русло. Появились широкие возможности соединения теории и практики. ОСНОВНЫЕ МЕТОДЫ ГЕНЕТИКИ. Основным методом генетики на протяжении многих лет является гибридологический метод. Гибридизацией называется процесс скрещивания с целью получения гибридов. Гибрид это организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм. Гибридизация может быть внутривидовой , когда скрещиваются особи одного вида и отдаленной , если скрещиваются особи из различных видов или родов. При исследовании наследования признаков используются методы моногибридного , дигибридного , полигибридного скрещивания , которые были разработаны еще Г. Менделем в его опытах с сортами гороха. При моногибридном скрещивании наследование проводится по одной паре альтернативных признаков , при дигибридном скрещивании- по двум парам альтернативных признаков, при полигибридном скрещивании- по 3,4 и более парам альтернативных признаков. При изучении закономерностей наследования признаков и закономерностей изменчивости широко используется метод искусственного мутагенеза, когда с помощью мутагенов вызывают изменение в генотипе и изучают результаты этого процесса. Широкое распространение в генетике нашел метод искусственного получения полиплоидов , что имеет не только теоретическое, но и практическое значение. Полиплоиды обладают большой урожайностью и меньше поражаются вредителями и болезнями. Широко используется в генетике биометрические методы. Ведь наследуются и изменяются не только качественные, но и количественные . Биометрические методы позволили обосновать положение фенотипа и нормы реакции. С 1953 года особое значение для генетики приобрели биохимические методы исследования. Генетика вплотную занялась изучением материальных основ наследственности и изменчивости - генов. Объектом исследования генетики стали нуклеиновые кислоты , особенно ДНК. Изучение химической структуры гена позволило ответить на главные вопросы , которые ставила перед собой генетика. Как происходит наследование признаков? В результате чего возникают изменения признаков?Законы наследования , установленные Г. Менделем . Доминантные и рецессивные признаки, гомозигота и гетерозигота, фенотип и генотип, аллельные признаки. Гешскому ботанику – любителю Иоганну Грегору Менделю принадлежит открытие количественных закономерностей, сопровождающих формирование гибридов. В работах Г. Менделя (1856-1863) были раскрыты основы законов наследования признаков. В качестве объекта исследования Менделем был выбран горох посевной. На период исследований для этого строго самоопыляющегося растения было известно достаточное количество сортов с четко различными исследуемыми признаками. Выдающимся достижением Г. Менделя явилась разработка методов исследования гибридов. Им было введено понятие моногибридного, дигибридного, полигибридного скрещивания. Мендель впервые осознал , что только начав с самого простого случая - наблюдения за поведением в потомстве одной пары альтернативных признаков- и постепенно усложняя задачу. Можно разобраться в закономерностях наследования признаков. Планирование этапов исследования, математическая обработка полученных данных, позволили Менделю получить результаты, которые легли в основу фундаментальных исследований в области изучения наследственности. Мендель начал с опытов по по моногибридному скрещиванию сортов гороха. Исследование касалось наследованию только одной пары альтернативных признаков (красный венчик-АА*белый венчик-аа). На основании полученных данных Мендель ввел понятие доминантного и рецессивного признака. Доминантным признаком он назвал признак, который переходит в гибридные растения совершенно неизменным или почти неизменным, а рецессивным тот, который становится при гибридизации скрытым . Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков для случаев моно-,ди-,тригибридного и более сложных скрещиваний. В результате исследований Г.Менделем были получены обоснования следующих обобщений фундаментальной важности: 1. При моногибридном скрещивании наблюдается явление доминирования. 2. В результате последующих скрещиваний гибридов происходит расщепление признаков в соотношении 3:1. 3. Особи содержат либо только доминантные, либо только рецессивные, либо смешанные задатки. Зигота, содержащая смешанные задатки получила название гетерозиготы, а организм , развившейся из гетерозиготы - гетерозиготным. Зигота, содержащая одинаковые(доминантные или рецессивные) задатки называется гомозиготой, а организм, развившейся из гомозиготы-гомозиготным. Мендель вплотную подошел к проблемам соотношения между наследственными задатками и определяемыми ими признаками организма. Внешний вид организма зависти от сочетания наследственных задатков. Этот вывод был им рассмотрен в работе УОпыты над растительными гибридамиФ. Мендель впервые четко сформулировал понятие дискретного наследственного задатка, независящего в своем проявлении от других задатков. Каждая гамета несет по одному задатку . Сумма наследственных задатков организма стала по предложению Иогансена в 1909 году называться генотипом, а внешний вид организма, определяемый генотипом , стал называться фенотипом. Сам наследственный задаток Иогансен позднее назвал геном. Во время оплодотворения гаметы сливаются, формируя зиготу, при этом в зависимости от сорта гамет, зигота получит те или иные наследственные задатки. За счет перекомбинации задатков при скрещиваниях образуются зиготы , несущие новое сочетание задатков, чем и обуславливаются различия между индивидуалами. Это легло в основу фундаментального закона Менделя- закона частоты гамет. Сущность закона заключается в следующем положении- гамет чисты, то есть они содержат по одному наследственному задатку от каждой пары. Пара задатков , сходящихся в гамете была названа аллелем , а сами задатки аллельными. Позднее появился термин аллельные гены, определяющий пару аллельных задатков. Работы Г. Менделя не получили в свое время никого признания и оставались неизвестными вплоть до вторичного переоткрытия законов наследственности К. Корренсом, К.Гермаком и Г. Де Фризом в 1900 году. В том же году Корренсом были сформулированны три закона наследования признаков, которые позднее были названы законами Менделя в честь выдающегося ученого, заложившего основы генетики.Моногибридное скрещивание. Единообразие гибридов первого поколения. Закон расщепления признаков.Цитологические основы единообразия гибридов первого поколения и расщепления признаков во втором поколении. Моногибридное скрещивание-это метод исследования , при котором изучается исследование одной пары альтернативных признаков. Для опытов по моногибридному скрещиванию Мендель выбрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семене круглые или угловатые, семядоли желтые или зеленые, кожура семян серая или белая, семена гладкие или морщинистые, желтые или зеленые, цветки пазушные или верхушечные, растения высокие или карликовые. В течении ряда лет Мендель путем самоопыления отбирал материал для скрещивания , где родители были представлены чистыми линиями, то есть находились в гомозиготном состоянии. Скрещивание показало , что гибриды проявляют только один признак.

© Рефератбанк, 2002 - 2017