Вход

Строение и деление клетки

Реферат* по биологии
Дата добавления: 08 мая 2011
Язык реферата: Русский
Word, doc, 605 кб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше
 Содержание:
Клетка
Строение клеток
Цитология
Микроскоп и клетка
Схема строения клетки
Деление клетки
Схема митотического деления клетки
 
Клетка
       Клетка - элементарная часть организма, способная к самостоятельному существованию, самовоспроизводству и развитию. Клетка - основа строения и жизнедеятельности всех живых организмов и растений. Клетки могут существовать как самостоятельные организмы, так и в составе многоклеточных организмов ( клетки ткани ). Термин «Клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка — предмет изучения особого раздела биологии — цитологии. Более систематическое изучение клеток началось в девятнадцатом веке. Одним из крупнейших научных теорий того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение любой жизни на клеточном уровне лежит в основе современных биологических исследований.
В строении и функциях каждой клетки обнаруживаются признаки, общие для всех клеток, что отражает единство их происхождения из первичных органических веществ. Частные особенности различных клеток — результат их специализации в процессе эволюции. Так, все клетки одинаково регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, туфельки, инфузории и т.д.) довольно сильно различаются размерами, формой, поведением. Не менее резко различаются клетки многоклеточных организмов. Так, у человека имеются лимфоидные клетки — небольшие (диаметром около 10 мкм) округлые клетки, участвующие в иммунологических реакциях, и нервные клетки, часть которых имеет отростки длиной более метра; эти клетки осуществляют основные регуляторные функции в организме.
 
       Первым цитологическим методом исследования была микроскопия живых клеток. Современные варианты прижизненной световой микроскопии — фазово-контрастная, люминесцентная, интерференционная и др. — позволяют изучать форму клеток и общее строение некоторых её структур, движение клеток и их деление. Детали строения клетки обнаруживаются лишь после специального контрастирования, что достигается окраской убитой клетки. Новый этап изучения структуры клетки — электронная микроскопия, имеющая значительно большее разрешение структуры клетки по сравнению со световой микроскопией. Химический состав клеток изучается цито - и гистохимическими методами, позволяющими выяснить локализацию и концентрацию вещества в клеточных структурах, интенсивность синтеза веществ и их перемещение в клетках. Цитофизиологические методы позволяют изучать функции клеток.
 
Строение клеток
Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.
Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).
Оболочка - таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.
Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.
Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.
 
Цитология
Наука, изучающая строение и отправление клеток, называется цитологией.
За последнее десятилетие она достигла больших успехов, что в значительной мере связано с разработкой новых методов исследования клетки.
Основным «орудием» цитологии служит микроскоп, позволяющий изучать строение клетки при увеличении в 2400—2500 раз. Клетки изучают в живом виде, а также после специальной обработки. Последняя сводится к двум основным этапам.
Сначала клетки фиксируют, т. е. убивают их быстродействующими ядовитыми для клеток веществами, не разрушающими их структуры. Вторым этапом является окраска препарата. Она основана на том, что разные части клетки с разной степенью интенсивности воспринимают некоторые красители. Благодаря этому удается отчетливо выявить различные структурные компоненты клетки, которые без окраски благодаря сходному коэффициенту преломления не видны. Очень часто применяют метод изготовления срезов. Для этого ткани или отдельные клетки после специальной обработки заключают в твердую среду (парафин, целлоидин), после чего при помощи особого прибора — микротома, снабженного острой бритвой, раскладывают на тонкие срезы толщиной от 3 микрон (микрон = 0,001 мм).
 
1. Не все организмы имеют клеточное строение.
Клеточная организация явилась результатом длительной эволюции, которой предшествовали неклеточные (доклеточные) формы жизни. Фиксированные и окрашенные препараты перед изучением заключают в среду с высоким коэффициентом преломления (глицерин, канадский бальзам и др.). Благодаря этому они становятся прозрачными, что облегчает исследование препарата.
В современной цитологии разработан ряд новых методов и приемов, применение которых чрезвычайно углубило знания о строении и физиологии клетки.
Очень большое значение для изучения клетки имеет применение биохимических и цитохимических методов. В настоящее время мы можем не только изучать строение клетки, но и определять ее химический состав и изменения его в процессе жизнедеятельности клетки. Многие из этих методов основаны на применении цветных реакций, позволяющих различать определенные химические вещества или группы веществ. Изучение распределения разных по своему химическому составу веществ в клетке путем цветных реакций представляет собой цитохимический метод. Он имеет большое значение для исследования обмена веществ и других сторон физиологии клетки.
 
Микроскоп и клетка
В современной цитологии широко применяют ультрафиолетовую микроскопию. Ультрафиолетовые лучи невидимы для человеческого глаза, но воспринимаются фотографической пластинкой. Некоторые играющие особо важную роль в жизни клетки органические вещества (нуклеиновые кислоты) избирательно поглощают ультрафиолетовые лучи. Поэтому по снимкам, изготовленным в ультрафиолетовых лучах, можно судить о распределении нуклеиновых веществ в клетке.
Разработан ряд тонких методов, позволяющих изучать проникновение разных веществ в клетку из окружающей среды.
Для этого, в частности, применяют прижизненные (витальные) красители. Это такие красящие вещества (например, нейтральный красный), которые проникают в клетку, не убивая ее. Наблюдая за живой витально окрашенной клеткой, можно судить о путях проникновения и накопления веществ в клетке.
Особенно большую роль в развитии цитологии, а также в изучении тонкого строения простейших сыграла электронная микроскопия.
Электронный микроскоп основан на ином принципе, чем световой оптический микроскоп. Объект изучают в пучке быстро летящих электронов. Длина волны электронных лучей во много тысяч раз меньше длины волны световых лучей. Это позволяет получить значительно большую разрешающую способность, т. е. гораздо большее увеличение, чем в световом микроскопе. Пучок электронов проходит сквозь изучаемый объект и затем падает на флуоресцирующий экран, на котором и проецируется изображение объекта. Чтобы объект был проницаемым для электронного пучка, он должен быть очень тонким. Обычные микротомные срезы толщиной в 3—5 мк для этого совершенно непригодны. Они полностью поглотят пучок электронов. Были созданы особые приборы — ультрамикротомы, которые позволяют получать срезы ничтожной толщины, порядка 100—300 ангстрем (ангстрем — единица длины, равная одной десятитысячной микрона). Различия в поглощении электронов разными частями клетки настолько малы, что без специальной обработки на экране электронного микроскопа они не могут быть обнаружены. Поэтому изучаемые объекты предварительно обрабатываются веществами, непроницаемыми или труднопроницаемыми для электронов. Таким веществом является четырехокись осмия (Os04). Она в различной степени поглощается разными частями клетки, которые благодаря этому по-разному задерживают электроны.
Применяя электронный микроскоп, можно получить увеличения порядка 100000.
Электронная микроскопия открывает новые перспективы в изучении организации клетки.
 
Схема строения клетки
 На рис. 15 и рис. 16 сопоставлена схема строения клетки, как она представлялась в двадцатых годах этого столетия и как она представляется в настоящее время.
 
Снаружи клетка отграничена от окружающей среды тонкой клеточной мембраной, которая играет важную роль в регуляции поступления веществ в цитоплазму. Основное вещество цитоплазмы имеет сложный химический состав.
 
Основу его составляют белки, которые находятся в состоянии коллоидного раствора. Белки — это сложные органические вещества, обладающие крупными молекулами (молекулярный вес их очень высок, измеряется десятками тысяч по отношению к атому водорода) и большой химической подвижностью. Кроме белков, в цитоплазме присутствуют и многие другие органические соединения (углеводы, жиры), среди которых особенно большое значение в жизни клетки играют сложные органические вещества — нуклеиновые кислоты. Из неорганических составных частей цитоплазмы следует прежде всего назвать воду, которая по весу составляет значительно больше половины всех веществ, входящих в состав клетки. Вода важна как растворитель, так как реакции обмена веществ протекают в жидкой среде. Кроме того, в клетке присутствуют ионы солей (Са2+, К+, Na+, Fe2+, Fe3+ и др.).
 
В основном веществе цитоплазмы располагаются органоиды — постоянно присутствующие структуры, выполняющие определенные функции в жизни клетки. Среди них важную роль в обмене веществ играют митохондрии. В световом микроскопе они видны в форме небольших палочек, нитей, иногда гранул.
 
Электронный микроскоп показал, что структура митохондрий очень сложна. Каждая митохондрия имеет оболочку, состоящую из трех слоев, и внутреннюю полость.
От оболочки в эту полость, заполненную жидким содержимым, вдаются многочисленные перегородки, не доходящие до противоположной стенки, называемые к р иста м и. Цитофизиологические исследования показали, что митохондрии являются органоидами, с которыми связаны дыхательные процессы клетки (окислительные). Во внутренней полости, на оболочке и кристах локализуются дыхательные ферменты (органические катализаторы), обеспечивающие сложные химические превращения, из которых слагается процесс дыхания.
В цитоплазме,кроме митохондрий,имеется сложная система мембран, образующая в совокупности эндоплазматическую сеть (рис. 16).
Как показали электронномикроскопические исследования, мембраны эндоплазматической сети двойные. Со стороны, обращенной к основному веществу цитоплазмы, на каждой мембране расположены многочисленные гранулы (называемые «тельцами Паллада» по имени открывшего их ученого). В состав этих гранул входят нуклеиновые кислоты (а именно рибонуклеиновая кислота), благодаря чему их называют также рибосомами. На эндоплазматической сети при участии рибосом осуществляется один из основных процессов жизнедеятельности клетки — синтез белков.
Часть цитоплазматических мембран лишена рибосом и образует особую систему, называемую аппаратом Гольджи.
Это образование обнаружено в клетках уже довольно давно, ибо его удается выявить особыми методами при исследовании в световом микроскопе. Однако тонкая структура аппарата Гольджи стала известна лишь в результате электронномикроскопических исследований. Функциональное значение этого органоида сводится к тому, что в области аппарата концентрируются различные синтезируемые в клетке вещества, например зерна секрета в железистых клетках и т. п. Мембраны аппарата Гольджи находятся в связи с эндоплазматической сетью. Возможно, что на мембранах аппарата Гольджи протекает ряд синтетических процессов.
Эндоплазматическая сеть связана с наружной оболочкой ядра. Эта связь играет, по-видимому, существенную роль во взаимодействии ядра и цитоплазмы. Эндоплазматическая сеть имеет также связь с наружной мембраной клетки и местами непосредственно переходит в нее.
При помощи электронного микроскопа в клетках был обнаружен еще один тип органоидов — лизосомы.
По размерам и форме они напоминают митохондрии, но легко отличаются от них по отсутствию тонкой внутренней структуры, столь характерной и типичной для митохондрий. По представлениям большинства современных цитологов, в лизосомах содержатся переваривающие ферменты, связанные с расщеплением крупных молекул органических веществ, поступающих в клетку. Это как бы резервуары ферментов, постепенно используемых в процессе жизнедеятельности клетки.
В цитоплазме животных клеток обычно по соседству с ядром располагается центросома. Этот органоид имеет постоянную структуру. Он слагается из девяти ультрамикроскопических палочковидных образований, заключенных в особо дифференцированную уплотненную цитоплазму. Центросома — органоид, связанный с делением клетки .
К роме перечисленных цитоплазматических органоидов клетки, в ней могут присутствовать различные специальные структуры и включения, связанные с обменом веществ и выполнением различных специальных, свойственных данной клетке функций. В животных клетках обычно присутствует гликоген, или животный крахмал. Это резервное вещество, потребляемое в процессе обмена веществ как основной материал для окислительных процессов. Часто имеются жировые включения в форме мелких капель.
В специализированных клетках, таких, как мышечные клетки, имеются особые сократимые волоконца, связанные с сократительной функцией этих клеток. Ряд специальных органоидов и включений имеется в растительных клетках. В зеленых частях растений всегда присутствуют хлоропласты — белковые тела, содержащие зеленый пигмент хлорофилл, при участии которого осуществляется фотосинтез — процесс воздушного питания растения. В качестве резервного вещества здесь обычно находятся крахмальные зерна, отсутствующие у животных. В отличие от животных, растительные клетки обладают, кроме наружной мембраны, прочными о б о57 лочками из клетчатк и, что обусловливает особую прочность растительных тканей.
 
Деление клетки
        В основе способности клеток к самовоспроизведению лежат уникальное свойство ДНК самокопироваться и строго равноценное деление репродуцированных хромосом в процессе Митоза. В результате деления образуются две клетки, идентичные исходной по генетическим свойствам и с обновленным составом ядра и цитоплазмы. Процессы самовоспроизведения хромосом, их деления, образования двух ядер и деления цитоплазмы разделены во времени, составляя в совокупности Митотический цикл клетки. В случае, если после деления клетка начинает готовиться к следующему делению, митотический цикл совпадает с жизненным циклом клетки. Однако во многих случаях после деления (а иногда и перед ним) клетки выходят из митотического цикла, дифференцируются и выполняют в организме ту или иную специальную функцию. Состав таких клеток может обновляться за счёт делений малодифференцированных клеток. В некоторых тканях и дифференцированные клетки способны повторно входить в митотический цикл. В нервной ткани дифференцированные клетки не делятся; многие из них живут так же долго, как организм в целом, то есть у человека — несколько десятков лет. При этом ядра нервных клеток не утрачивают способности к делению: будучи пересажены в цитоплазму раковых клеток, ядра нейронов синтезируют ДНК и делятся. Опыты с клетками-гибридами показывают влияние цитоплазмы на проявление ядерных функций. Неполноценная подготовка к делению предотвращает митоз или искажает его течение. Так, в некоторых случаях не происходит деления цитоплазмы и образуется двуядерная клетка. Многократное деление ядер в неделящейся клетке приводит к появлению многоядерных клеток или сложных надклеточных структур (симпластов), например в поперечнополосатых мышцах. Иногда репродукция клетки ограничивается воспроизведением хромосом, и образуется полиплоидная клетка, имеющая удвоенный (сравнительно с исходной клеткой) набор хромосом. Полиплоидизация приводит к усилению синтетической активности, увеличению размеров и массы клетки.
 
Одним из основных биологических процессов, обеспечивающих преемственность форм жизни и лежащих в основе всех форм размножения, является процесс деления клетки. Этот процесс, известный под названием кариокинеза, или митоза, с удивительным постоянством, лишь с некоторыми вариациями в деталях, осуществляется в клетках всех растений и животных, в том числе и простейших. При митозе происходит равномерное распределение хромосом, претерпевающих удвоение между дочерними клетками. От любого участка каждой хромосомы дочерние клетки получают половину. Не вдаваясь в детальное описание митоза, отметим лишь его основные моменты.
В первой стадии митоза, называемой профазой, в ядре становятся отчетливо видимыми хромосомы в форме нитей.
В неделящемся ядре, как мы видели, хромосомы имеют вид тонких, неправильно расположенных нитей, переплетающихся друг с другом. В профазе происходит их укорачивание и утолщение. Вместе с тем каждая хромосома оказывается двойной. По длине ее проходит щель, разделяющая хромосому на две рядом лежащие и совершенно подобные друг другу половины.
На следующей стадии митоза — метафазе — оболочка ядра разрушается, ядрышки растворяются и хромосомы оказываются лежащими в цитоплазме. Все хромосомы располагаются при этом в один ряд, образуя так называемую экваториальную пластинку. Существенные изменения претерпевает центросома. Она делится на две части, которые расходятся, и между ними образуются нити, формирующие а х р о м атиновое веретено. Экваториальная пластинка хромосом располагается по экватору этого веретена.
На стадии анафазы происходит процесс расхождения к противоположным полюсам дочерних хромосом, образовавшихся, как мы видели, в результате продольного расщепления материнских хромосом. Расходящиеся в анафазе хромосомы скользят по нитям ахроматинового веретена и в конце концов собираются двумя группами в области центросом.
Во время последней стадии митоза — телофазы — происходит восстановление структуры неделящегося ядра. Вокруг каждой группы хромосом образуется ядерная оболочка. Хромосомы вытягиваются и утончаются, превращаясь в длинные, беспорядочно расположенные тонкие нити. Выделяется ядерный сок, в котором появляется ядрышко.
Одновременно со стадиями анафазы и телофазы происходит разделение на две половины цитоплазмы клетки, которое осуществляется обычно путем простой перетяжки.
Как видно из нашего краткого описания, процесс митоза сводится в первую очередь к правильному распределению хромосом между дочерними ядрами. Хромосомы состоят из пучков нитевидных молекул ДНК, расположенных по продольной оси хромосомы. Видимому началу митоза предшествует, как это теперь установлено точными количественными измерениями, удвоение ДНК, молекулярный механизм которого мы уже рассмотрели выше.
Таким образом, митоз и расщепление хромосом во время него является лишь видимым выражением процессов удвоения (ауторепродукции) молекул ДНК, осуществляемого на уровне молекул. ДНК определяет через посредство РНК белковый синтез. Качественные особенности белков «закодированы» в структуре ДНК. Поэтому очевидно, что точное разделение хромосом в митозе, базирующееся на редупликации (ауторепродукции) молекул ДНК, лежит в основе «наследственной информации» в ряде следующих друг за другом поколений клеток и организмов.
Число хромосом, так же как их форма, размеры и т. п., является характерным признаком каждого вида организмов. У человека, например, имеется 46 хромосом, у окуня — 28, у мягких пшениц — 42 и т. п.
© Рефератбанк, 2002 - 2024