3.1 Как устроена звезда и как она живёт
Звёзды не останутся вечно такими же, какими мы их видим сейчас. Во Вселенной постоянно рождаются новые звёзды, а старые умирают. Чтобы понять, как эволюционирует звезда, необходимо проанализировать процессы, протекающие в недрах звезды. А для этого надо знать, как устроены эти недра, каковы их химический состав, температура, плотность, давление. Но наблюдениям доступны лишь внешние слои звёзд – их атмосферы. Проникнуть в глубь даже ближайшей звезды – Солнца – мы не можем. Приходится прибегать к косвенным методам: расчётам, компьютерному моделированию. При этом пользуются данными о внешних слоях, известными законами физики и механики, общими как для Земли, так и для звёздного мира.
Наблюдения показывают, что большинство звёзд устойчивы, т.е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на её вещество внутренние силы уравновешиваются.
Звезда – раскалённый газовой шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давление газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.
Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.
Лучи, испускаемые звездой, получают свою в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.
Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца – около 15 млн. градусов.
Строение звёзд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества (конвекция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составляет конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, а его объём уменьшается. Внешние же области звезды при этом расширяются, она увеличивается в размерах, а температура её поверхности падаёт. Горячая звезда – голубой гигант – постепенно превращается в красный гигант.
Строение красного гиганта уже иное. Когда в процессе сжатия конвективного ядра весь водород превращается в гелий, температура в центре повысится до 50-100 млн. градусов и начнется горение гелия. Он в результате ядерных реакций превращается в углерод. Ядро горящего гелия окружено тонким слоем горящего водорода, который поступает из внешней оболочки звезды. Следовательно, у красного гиганта два источника энергии. Над горящим ядром находится протяженная оболочка.
В дальнейшем ядерные реакции создают в центре массивной звезды всё более тяжелые элементы, вплоть до железа. Синтез элементов тяжелее железа уже не приводит к выделению энергии. Лишенное источников энергии, ядро звезды быстро сжимается. Это может повлечь за собой взрыв – вспышку сверхновой. Иногда при взрыве звезда полностью распадается, но чаще всего, по-видимому, остается компактный объект – нейтронная звезда или черная дыра.
Вместе с оболочкой взрыв уносит в межзвездную среду различные химические элементы, образовавшиеся в недрах звезды за время её жизни. Новое поколение звезд, рождающихся из межзвездного газа, будет содержать уже больше тяжелых химических элементов.
Срок жизни звезды напрямую зависит от её массы. Звезды с массой в 100 раз больше солнечной живут всего несколько миллионов лет. Если масса составляет две – три солнечных, срок жизни увеличивается до миллиарда лет.
В звездах – карликах, массы которых меньше массы Солнца, конвективное ядро отсутствует. Водород в них горит, превращаясь в гелий, в центральной области, не выделяющейся из остальной части звезды наличием конвективных движений. В карликах этот процесс протекает очень медленно, и они практически не изменяются в течение миллиардов лет. Когда водород полностью сгорает, они медленно сжимаются и за счет энергии сжатия могут существовать ещё очень длительное время.
Солнце и подобные ему звезды представляют собой промежуточный случай. У Солнца имеется маленькое конвективное ядро, но не очень чётко отделённое от остальной части. Ядерные реакции горения водорода протекают как в ядре, так и в его окрестностях. Возраст Солнца примерно 4,5-5 млрд. лет. И за это время оно почти не изменило своего размера и яркости. После исчерпания водорода Солнце может постепенно вырасти в красный гигант, сбросить чрезмерно расширившуюся оболочку и закончить свою жизнь, превратившись в белого карлика. Но это случится не раньше, чем через 5 млрд. лет.
3.2 Взрывающиеся звезды
Тот, кто внимательно следит за звёздами из ночи в ночь, имеет в своей жизни шанс обнаружить новую звезду, возникшую как бы на пустом месте. Блеск такой звезды постепенно увеличивается, достигает максимума и, через несколько месяцев, ослабевает настолько, что она становится невидимой даже вооруженным глазом, исчезает.
Ещё более грандиозное, но чрезвычайно редкое небесное явление, получившее название сверхновой звезды, запечатлено во многих исторических летописях разных народов. Блеск сверхновой, вспыхивавшей тоже вроде бы на пустом месте, иногда достигал такой величины, что звезду было видно даже днём.
Явления новых звезд были обнаружены еще в глубокой древности. В ХХ в., когда астрономические наблюдения приобрели регулярный характер, а вид звездного неба «протоколировался» на фотопластинках, стало ясно, что на месте «новых» звезд на самом деле находятся слабые звездочки. Просто внезапно их блеск увеличивается до своего максимума и затем вновь уменьшается до спокойного уровня. Более того, оказалось, что иногда явление новой звезды повторяется более или менее регулярно на одном и том же месте, т.е. одна и та же звезда по каким-то причинам раз в сотни лет или чаще увеличивает свою светимость.
Иначе обстоит дело со сверхновыми. Если на их месте до начала вспышки и была заметна звезда (как, например, в случае относительно яркой сверхновой 1987 г. в Большом Магеллановом Облаке), то после вспышки она действительно исчезает, а сброшенная ею оболочка еще долгие годы наблюдается как светящаяся туманность.
Исследования сверхновых звезд, вспыхнувших в нашей галактике, затрудняются тем, что эти небесные объекты чрезвычайно редко доступны наблюдениям. За всю историю науки их удалось увидеть всего несколько раз. Однако регулярные наблюдения множества других галактик приводят к ежегодному обнаружению до нескольких десятков сверхновых в далеких звездных системах. Установлено, что в среднем в каждой галактике вспышка сверхновой происходит раз в несколько десятилетий. Причем в максимуме своего блеска она может быть столь же яркой, как остальные сотни миллиардов звезд галактики, вместе взятые. Самые далекие из известных ныне сверхновых находятся в галактиках, расположенных в сотнях мегапарсек от Солнца.
Как впервые предположили в 30-е гг. ХХв. Вальтер Бааде и Фриц Цвикки, в результате взрыва сверхновой может образоваться сверхплотная нейтронная звезда. Эта гипотеза подтвердилась после открытия пульсара – быстро вращающейся нейтронной звезды с периодом 33 миллисекунды – в центре известной Крабовидной туманности в созвездии Тельца; он возник на месте вспышки сверхновой 1054 г.
Итак, явления новых и сверхновых звезд имеют совершенно различную природу. Каково же современное представление о них?
3.3 Новые звезды
Во время вспышки блеск новой увеличивается на 12-13 звездных величин, а выделяемая энергия достигает 1039 Дж (такая энергия излучается Солнцем примерно за 100 тыс. лет). До середины 50-х гг. природа вспышек новых звезд оставалась неясной. Но в 1954 г. было обнаружено, что известная новая звезда DQ Геркулеса входит в состав тесной двойной системы с орбитальным периодом в несколько часов. В дальнейшем удалось установить, что все новые звезды являются компонентами тесных двойных систем, в которых одна звезда – как правило, звезда главной последовательности типа нашего Солнца, а вторая – компактный, размером в сотую долю радиуса Солнца, белый карлик.
Орбита такой двойной системы настолько тесна, что нормальная звезда сильно деформируется приливным воздействием компактного соседа. Плазма из атмосферы этой звезды может свободно падать на белый карлик, образуя вокруг него аккреционный диск. Вещество в диске тормозится вязким трением, нагревается, вызывая свечение (именно оно и наблюдается в спокойном состоянии), и в конце концов достигает поверхности белого карлика.
По мере падения вещества на белом карлике образуется тонкий плотный слой газа, температура которого постепенно увеличивается. В итоге (как раз за характерное время от нескольких лет до сотен лет) температура и плотность этого поверхностного слоя вырастают до столь высоких значений, что столкновения быстрых протонов начинают приводить к термоядерной реакции синтеза гелия. Но в отличие от центральных частей Солнца и других звёзд, где эта реакция протекает достаточно медленно, на поверхности белого карлика она носит взрывообразный характер (главным образом из-за очень большой плотности вещества).
Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки (кстати, весьма малой массы – «всего» около сотой доли массы Солнца), разлет и свечение которой наблюдаются как вспышка новой звезды. Несмотря на огромную выделенную энергию, разлетающаяся оболочка не оказывает заметного воздействия на соседнюю звезду, и та продолжает поставлять топливо для следующего взрыва.
Как показывают оценки, ежегодно в галактике вспыхивает около сотни новых звёзд. Но самые яркие новые довольно часто бывают видны невооруженным глазом. К примеру, в 1975 г. новая звезда в созвездии Лебедя почти полгода «искажала» его крестообразную конфигурацию.
С началом эры рентгеновской астрономии (60-е гг.) выяснилось, что новые звезды наблюдаются не только в оптическом диапазоне. Так, в 70-е гг. были открыты рентгеновские барстеры – регулярно вспыхивающие источники рентгеновского излучения. Механизм вспышек здесь в целом такой же, как и у классических новых звезд. Разница в том, что второй компонент тесной двойной системы не белый карлик, а еще более компактная нейтронная звезда радиусом всего около 10 км.
Вещество нормальной звезды типа Солнца или красного карлика «срывается» приливными силами со стороны нейтронной звезды, образуя аккреционный диск. Газ попадает на поверхность нейтронной звезды, если она не обладает сильным магнитным полем, нагревается, и это приводит к повторяющимся термоядерным взрывам. А из-за большой компактности нейтронной звезды плотность вещества, достигшего поверхности, оказывается чудовищно высокой. Разогретый термоядерными взрывами газ излучает в основном энергичные рентгеновские кванты.
Наконец, нельзя не упомянуть еще об одном типе новых звезд - рентгеновских новых. Они вспыхивают в рентгеновском диапазоне на несколько месяцев, а затем полностью исчезают. Сейчас таких рентгеновских новых известно около десяти.
3.4 Сверхновые звезды
Сверхновые звезды – одно из самых грандиозных космических явлений. Коротко говоря, сверхновая – это настоящий взрыв звезды, когда большая часть ее массы (а иногда и вся) разлетается со скоростью до 10000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в черную дыру. Сверхновые играют важную роль в эволюции звезд. Они являются финалом жизни звезд массой более 8-10 солнечных, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более легких элементов и элементарных частиц при взрывах массивных звезд.
По наблюдаемым характеристикам сверхновые принято разделять на две большие группы – сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звезд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр; формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.
Сейчас надежно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии – порядка 1046 Дж. Основная энергия взрыва уносится не фотонами, а нейтрино – быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.
4. Конец жизненного пути звезды
Звёзды рождаются с самыми различными массами. Кроме того, они могут обладать самым разным химическим составом. Оба эти фактора оказывают влияние на дальнейшее поведение звезды, на всю её судьбу.
Продолжительность жизни звезды зависит от её массы. Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,2 масс Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик.
Во что превращаются звезды в конце жизни и как проявляют себя их остатки? Звезды разной массы приходят в итоге к одному из трех состояний: белые карлики, нейтронные звезды или черные дыры.
4.1 Белые карлики или будущее Солнца
Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд.
История открытия белых карликов восходит к началу 19в., когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда, которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса.
Белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы.
Известны белые карлики двух типов - холодные и горячие.
В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее, по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана.
Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 К у "холодных" звёзд до 50000 К у "горячих".
Диаметр белого карлика определяется его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 100000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика.
Единственный вид энергии, которым располагает белый карлик, - это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож не на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство.
Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца. В конце концов, белый карлик должен исчезнуть и стать чёрным карликом, однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст
Вселенной был достаточно велик для появления в ней чёрных карликов.
Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений. И, тем не менее, общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов.
Масса белых карликов не может превышать некоторого значения – это так называемый предел Чандрасекара (по имени американского астрофизика, индийца по происхождению, Субрахманьяна Чандрасекара), он равен примерно 1,4 массы Солнца.
Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды.
4.2 Нейтронные звезды
Рождение нейтронных звезд сопровождается грандиозным небесным явлением – вспышкой сверхновой звезды. Зная из наблюдений, что вспышки сверхновых в нормальной галактике происходят примерно раз в 25 лет, легко вычислить, что за время существования нашей Галактики (10-15 млрд. лет) в ней должно было образоваться несколько сот миллионов нейтронных звезд.
Молодые нейтронные звёзды быстро вращаются (периоды вращения измеряются миллисекундами) и обладают сильным магнитным полем. Вращение вместе с магнитным полем создают мощные электрические поля, которые вырывают заряженные частицы из твёрдой поверхности нейтронной звезды и ускоряют их до очень высоких энергий. Эти частицы излучают радиоволны.
С потерей энергии вращение нейтронной звезды тормозится, электрический потенциал, создаваемый магнитным полем, падает. При некотором его значении заряженные частицы перестают рождаться и радиопульсар «затухает». Это происходит за время около 10 млн. лет, поэтому действующих пульсаров в Галактике должно быть несколько сот тысяч. В настоящее время наблюдается примерно 700 пульсаров.
Как и для белых карликов, для нейтронных звезд существует предельно возможная масса (она носит название предела Оппенгеймера – Волкова). Строение материи при столь высоких плотностях известно плохо. Поэтому предел Оппенгеймера – Волкова точно не установлен, его величина зависит от сделанных предположений о типе и взаимодействии частиц внутри нейтронной звезды. Но в любом случае он не превышает трёх масс Солнца.
Если масса нейтронной звезды превосходит это значение, никакое давление вещества не может противодействовать силам гравитации. Звезда становится неустойчивой и быстро коллапсирует. Так образуется чёрная дыра.
4.3 Чёрные дыры
Термин «чёрная дыра» был весьма удачно введён в науку американским физиком Джоном Уилером в 1968 г. для обозначения сколлапсировавшей звезды. На достаточно больших расстояниях чёрная дыра проявляет себя как обычное гравитирующее тело той же массы. Поверхности в традиционном понимании у чёрных дыр быть не может. Удивительно, но самые «экзотические» с точки зрения образования и физических проявлений космические объекты – чёрные дыры – устроены гораздо проще, чем обычные звезды или планеты. У них нет химического состава, их строение не связано с различными типами взаимодействия вещества – они описываются только уравнениями гравитации Эйнштейна. Кроме массы чёрная дыра может ещё характеризоваться моментом количества движения и электрическим зарядом.
Но если чёрные дыры не светят, то, как же можно судить о реальности этих объектов во Вселенной? Единственный путь - наблюдать воздействие их гравитационного поля на другие тела.
Имеются косвенные доказательства существования чёрных дыр более чем в 10 тесных двойных рентгеновских звёздах. В пользу этого говорят, во-первых, отсутствие известных проявлений твёрдой поверхности, характерных для рентгеновского пульсара или рентгеновского барстера (например, периодических импульсов в излучении), и, во-вторых, большая масса невидимого компонента двойной системы (больше трёх масс Солнца).
5. Заключение
За период немногим более двух столетий представление о звёздах изменилось кардинально. Из непостижимо далёких и равнодушных светящих точек на небе они превратились в предмет всестороннего физического исследования.
Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и не видимое глазу излучение звёзд. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.
Сейчас уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного. Ещё впереди то время, когда исполнится мечта создателя современной науки о звёздах Артура Эддингтона и люди, наконец, смогут понять такую великую вещь, как звезда.