СОДЕРЖАНИЕ
Введение |
2 |
Общая информация о тиолах |
3 |
Свойства тиолов |
5 |
Способы синтеза тиолов |
8 |
Практическая часть |
10 |
Выводы |
11 |
Список использованной литературы |
12 |
ВВЕДЕНИЕ
В современной химии одной из актуальных проблем является получение реагентов для проведения различных синтезов. С каждым годом повышаются требования к чистоте реагентов. Кроме того, немаловажными факторами остаются скорость реакции и доступность реагентов.
Целью данной работы является синтез 4-метилтиофенола.
Общая информация о тиолах
Тиолы RSH и сульфиды R1SR2 следует рассматривать как производные спиртов и эфиров. Тиолы в номенклатуре ИЮПАК имеют окончание тиол:
3-пентантиол |
2-метил-1-бутантиол |
циклогексантиол |
1-пропантиол |
Старинное название сернистых аналогов спиртов - меркаптаны и SH-группы как меркапто- теперь редко употребляется.
Сульфиды называют аналогично простым эфирам. В соответствии с рациональной номенклатурой перед словом сульфид дается название двух алкильных или арильных групп, например:
дифенилсульфид |
метилпропилсульфид |
гептил-(1,1-диметил)-этилсульфид |
По номенклатуре ИЮПАК сульфиды называются алкилтиоалканами. Префикс алкилтио- подобен префиксу алкокси- в названии простых эфиров. Как и у простых эфиров, большая из алкильных групп дает название главной цепи алкана:
Номенклатура ИЮПАК для сульфидов применяется только для соединений сложной структуры, в более простых случаях пользуются общей номенклатурой, где их называют диалкил- (арил)сульфидами. Ниже приведено строение простейшего из тиолов - метантиола:
Длина связи, Е |
Валентный угол |
|
С-Н, 1,10 |
Н-С-Н, 110o |
|
S-Н, 1,33 |
Н-С-S, 108o |
|
С-S, 1,82 |
С-S-Н, 100o |
По строению метантиол напоминает метанол, но связь C-S значительно длиннее связи С-О. Барьер вращения вокруг связи C-S такой же, как и для связи С-O, и составляет 1,1 ккал/моль. Тиолы проявляют свойства более сильных кислот, чем спирты, подобно тому как H2S (рKa=7,05) диссоциирован сильнее, чем вода. Для тиолов рKa изменяется в интервале 9,5-11, т.е. гидроксид-ион превращает тиолы нацело в тиолат-ион:
Связь S-H значительно менее полярна, чем связь O-Н, и тиолы связаны между собой очень слабой межмолекулярной водородной связью в отличие от спиртов. Это выражается в более низкой температуре кипения тиолов. Так, например, этантиол кипит при 37oС, тогда как этанол - при 78oС.
Наиболее важным физическим свойством тиолов является отвратительный запах. Человеческий нос распознает запах тиола в концентрации 107-l08 моль/л, не доступной для многих спектральных и хроматографических методов. Тиолы в очень низкой концентрации вводят в природный гaз для того, чтобы по их запаху можно было определить утечки газа в помещении.
Меркаптаны придают запах крайне зловонному секрету скунса – небольшому зверьку семейства куньих. Описаны случаи, когда люди теряли сознание, вдохнув выделения этих животных, и даже на следующий день чувствовали головную боль. Выделения скунса были подробно проанализированы в 1975 году К.К.Андерсеном и Д.Т.Бернштейном. Они обнаружили в них 3-метилбутантиол (изоамилмеркаптан) (СН3)2СН-СН2 -СН2–SН, транс-2-бутен-1-тиол (кроилмеркаптан) СН3-СН=СН-СН2–SН и транс-2-бутенил-этилдисульфид СН3-СН=СН-СН2-S-S-СН3.
Но бывают запахи и похуже. В знаменитой Книге рекордов Гиннеса к самым зловонным химическим соединениям отнесены этилмеркаптан С2Н5SН и бутилмеркаптан С4Н9SН – их запах напоминает комбинацию запахов гниющей капусты, чеснока, лука и нечистот одновременно. А в учебнике А.Е.Чичибабина "Основные начала органической химии" сказано: "Запах меркаптанов – один из самых отвратительных и сильных запахов, какие встречаются у органических веществ... Метилмеркаптан СН3SН образуется при гидролизе кератина шерсти и гниении белковых веществ, содержащих серу. Он находится также в человеческих испражнениях, являясь вместе со скатолом (бета-метилиндол) причиной их неприятного запаха".
СВОЙСТВА ТИОЛОВ
Некоторые из свойств тиолов по существу аналогичны свойствам спиртов. Анионы тиолов вступают в реакцию Вильямсона, приводящую к получению тиоэфиров (сульфидов):
Тиолят-ионы являются более сильными нуклеофильными агентами, чем алкоголят-ионы, и скорость образования тиоэфиров в 103-104 раза превышает скорость реакции для их кислородных аналогов. Это позволяет осуществлять реакцию в мягких условиях. Метод межфазного катализа исключительно эффективен для синтеза сульфидов:
Сульфиды могут быть также получены в результате прямого взаимодействия сульфида натрия с двумя молями алкилирующего агента:
Высокая нуклеофильность атома серы в сульфидах открывает возможность для получения солей сульфония в результате алкилирования сульфидов:
Подобно своим кислородным аналогам, сульфониевые соли могут быть использованы в качестве алкилирующих агентов в реакциях бимолекулярного нуклеофильного замещения у атома углерода сульфониевой соли:
Роль уходящей группы в этой реакции играет диметилсульфид, но, несмотря на наличие формального положительного заряда, (CH3)2S является худшей уходящей группой по сравнению с OTs--и Вr--ионами.
Окисление тиолов резко отличается от окисления спиртов. В зависимости от природы окислителя продуктами окисления тиолов являются дисульфиды R-S-S-R, сульфиновые RSO2H или сульфоновые RSO3H кислоты. При действии таких окислителей, как йод, бром, пероксид водорода, MnО3, тиолы окисляются до дисульфидов:
2RSH + I2 ? R-S-S-R + 2HI,
2RSH + Н2О2 ? R-S-S-R + 2H2O.
Дисульфиды легко восстанавливаются обратно до тиолов цинком в уксусной кислоте или лучше всего раствором щелочного металла в жидком аммиаке:
Перкислоты, например мета-хлорпербензойная кислота, в исключительно мягких условиях окисляют тиолы до сульфиновых кислот:
Сильные окислители - азотная кислота или перманганат калия - окисляют тиолы до сульфоновых кислот (продуктов исчерпывающего окисления органических соединений серы):
Сульфиды окисляются последовательно до сульфоксидов и далее до сульфонов:
Среди огромного количества разнообразных окислителей наилучшие результаты для превращения сульфидов в сульфоксиды достигаются при использовании метапериодата натрия NaIO4, мета-хлорпербензойной кислоты и трет-бутилгипо-хлорита. Среди них наиболее широко применяется 0,5 М водный раствор метапериодата натрия. Этот реагент обеспечивает очень высокую селективность окисления сульфидов до сульфоксидов практически без примеси сульфона и других побочных продуктов, если окисление проводится при 0 oС в бинарной системе вода - органический растворитель (метанол, диоксан, ацетонитрил):
Механизм окисления сульфидов периодатом, по-видимому, аналогичен механизму расщепления 1,2-гликолей и включает циклический интермедиат:
СПОСОБЫ СИНТЕЗА ТИОЛОВ
Самый старый метод получения тиолов основан на реакции бимолекулярного нуклеофильного замещения галогенид-иона в первичных и вторичных алкилгалогенидах под действием гидросульфид-иона:
Выходы тиолов, полученных этим способом, часто бывают невысоки, поскольку тиолат-ионы очень легко подвергаются дальнейшему алкилированию, приводящему к образованию симметричных диалкилсульфидов R2S. Для сведения к возможному минимуму эту последующую реакцию, используется большой избыток свежеприготовленного гидросульфида натрия.
Современный метод синтеза тиолов заключается во взаимодействии алкилгалогенидов или алкилсульфонатов с тиомочевиной. Тиомочевина в этой реакции играет роль сернистого нуклеофила, и алкилирование осуществляется исключительно по атому серы тиомочевины с образованием S-алкилтиурониевой соли. Расщепление S-алкилтиурониевой соли под действием щелочи приводит к тиолу:
Другими разновидностями этого метода являются алкилирование тиоацетата калия или ксантогената калия с последующим щелочным гидролизом:
Кроме способов получения, в основе которых лежит нуклеофильное замещение на SH группу, тиоспирты можно получить восстановлением серосодержащих функциональных групп. При этом возможно образование меркаптанов или дисульфидов. Препаративное значение имеет преимущественно восстановление ароматических сульфохлоридов и восстановительное расщепление дисульфидов. Ароматические сульфохлориды при действии различных восстановителей в большинстве случаев восстанавливаются до тиофенолов с хорошим выходом. К наиболее часто используемым восстановителям относятся: водород в момент выделения (Zn, Sn, Fe в минеральных кислотах), гидросульфиды щелочных металлов, сульфит натрия в щелочной среде, алюмогидрид лития:
Недостатками методов восстановления являются возможность образования дисульфидов и нетерпимость к наличию катализаторов гидрирования (следы Pt, Pd и т.д.) в реакционной смеси при синтезе непредельных тиолов.
Практическая часть
Для синтеза 4-метилтиофенола выбран метод восстановления п-толуолсульфохлорида водородом в момент выделения. Для получения водород использована смесь концентрированной хлороводородной кислоты и гранулированного олова:
Реактивы:
Вещество |
M (г/моль) |
m (г) |
? (г/мл) |
V (мл) |
? (моль) |
п-CH3C6H4SO2Cl |
190,5 |
9,53 |
- |
- |
0.05 |
Sn |
118.7 |
20 |
- |
- |
0.17 |
HCl (конц) |
36,5 |
5,475 |
1,17 |
50 |
0,40 |
Оборудование: Трехгорлая круглодонная колба объемом 250 мл, механическая мешалка, холодильник Либиха, мерная колба объемом 50мл, парообразователь, паропдводящая и предохранительные трубки, насадка Вюрца, аллонж с отводом, плоскодонный приемник объемом 250 мл, водяная баня.
|
|
Рис. 1 Прибор для проведения реакции |
Рис.2 Прибор для перегонки с паром |
Ход работы: В собранный прибор для проведения реакции (рис. 1) было помещено 20,0г. (0,17 моль) гранулированного олова и добавлено 50 мл. 36% хлороводородной кислоты. Полученная смесь нагревалась на кипящей водяной бане до 100?С. После нагрева, в колбу в течение часа небольшими порциями помещался п-толуолсульфохлорид. После полного растворения п-толуолсульфохлорида реакционная смесь нагревалась в течение 4 часов на кипящей водяной бане. Образовавшийся 4-метилтиофенол отгонялся из горячей реакционной смеси перегонкой с водяным паром (рис. 2). Выпавшие в приемнике кристаллы 4-метилтиофенола были отфильтрованы на воронке Бюхнера и высушены в эксикаторе над пентаоксидом фосфора.
Техника безопасности: п-Тиокрезол отличается отвратительным запахом горелой резины, поэтому все работы по его синтезу и очистке проводились в эфирной комнате в вытяжном шкафу. Так же опасность представляла хлороводородная кислота из-за раздражающего действия паров хлороводорода.
Результаты:
mтеор.=0,05моль*95г.моль=4,75г.
mпракт.=3,79г.
?=*100%=79,78%
Константы продукта (литературные данные): Tпл. 317К; Ткип. 468К
Константы продукта (практические данные): Tпл. 318,5К
Выводы
На основе литературных данных обнаружен метод синтеза 4-метилтиофенола восстановлением п-толуолсульфохлорида водородом в момент выделения. Проведен синтез, полученный продукт очищен перегонкой с паром, чистота продукта доказана методом измерения температуры плавления.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
А.Л.Курц, Г.П.Брусова, В.М.Демьянович "Одно- и двухатомные спирты, простые эфиры и их сернистые аналоги". Методическая разработка для студентов кафедры органической химии МГУ им. М.В.Ломоносова. М.: МГУ, 1999.
В.Г.Жиряков “Органическая химия”, М.:Химия, 1971 – 496с.
Вейганд-Хильгетаг "Методы эксперимента в органической химии" / Пер. с нем. Л.В. Коваленко, А.А. Заликина; Под ред. Н.Н. Суворова. - М.: Химия 1968, 944с.
Бартошевич Р., Мечниковска-Столярчик В., Опшондек Б. "Методы восстановления органических соединений". М.: Изд-во иностр.лит, 1960. - 406 с.
"Органикум: Практикум по органической химии" / Пер с нем. В.М. Потапова, С.В. Пономарева - М.: Мир 1979, 2т.
Ю.С.Шабаров “Органическая химия: Учебник для вузов”, М.: Химия, 2002 – 848с.
“Руководство для практических работ по органической химии”; под ред. Е.Г. Катаева. Казань 1971
NIST Standard Reference Database 69 – March 2003 http://www.nist.gov
стр.