Вход

Роль силикатной промышленности в народном хозяйстве

Курсовая работа по химии
Дата добавления: 13 мая 2009
Язык курсовой: Русский
Word, rtf, 180 кб (архив zip, 30 кб)
Курсовую можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу

БрГУ

Кафедра химии










Реферат на тему






Роль силикатной промышленности в народном хозяйстве.








Выполнил:

Студент V курса

Биологического факультета

Сп. «Химия и биология»

Пепеляев Станислав









Брест



План.





  1. Силикаты в природе.

  1. Основные области применения соединений кремния в народном хозяйстве.

1.1 Строительные материалы.

1.1.1 Кирпич.

1.1.2 Цемент.

2.2. Изделия широкого потребления.

2.2.1. Фарфор.

2.2.2. Стекло.

3. Заключение.

4. Список литературы.



1. Силикаты в природе.


Природные силикаты образовались в основном из расплавленной магмы. Предполагается, что при затвердевании магмы из нее сначала выкристаллизовывались силикаты, более бедные кремнеземом -ортосиликаты, затем после израсходования катионов выделялись силикаты с высоким содержанием кремнезема - полевые шпаты, слюды и, наконец, чистый кремнезем. Силикаты - сложные кремнекислородные соединения в виде минералов и горных пород, занимают определяющее место в составе земной коры (80% по В.И.Вернадскому). А если добавить природный оксид кремния - кварц, то кремнекислородные соединения образуют более 90% массы земной коры и практически полностью слагают объем Земли. Силикатные минералы являются породообразующими: такие горные породы, как гранит, базальт, кварцит, песчаник, полевой шпат, глина, слюда и другие, сложены силикатными и алюмосиликатными минералами. Абсолютное большинство силикатных минералов является твердыми кристаллическими телами, и только незначительное количество минералов находится в аморфном состоянии (халцедон, опал, агат и др.) или в коллоидно-дисперсном состоянии: глины, цеолиты, палыгорскит и др. Каждый минерал, как известно, обладает совокупностью физических и химических свойств, которые всецело определяются его кристаллической структурой и химическим составом.

Кристаллические структуры силикатов многообразны, но основу их составляют комбинации атомов самых распространенных элементов - Si (кремния) и O (кислорода).

Координатное число кремния 4. Таким образом, каждый атом кремния находится в окружении четырех атомов кислорода. Если соединить центры атомов кислорода, то образуется пространственная кристаллическая структура - тетраэдр, в центре которого находится атом кремния, соединенный с четырьмя атомами кислорода в вершинах. Такая группировка называется кремнекислородным радикалом [SiO] . Химическая связь Si-O-Si называется силоксановой, природа связи - ковалентная, энергия связи Si-O очень высока и равняется 445 кДж/моль.

Поскольку устойчивое координатное число кремния равно 4, силикатные структуры полимерны. Они представлены различными типами структур - островной, кольцевой, цепочечной или слоистой, каркасной.

Состав и строение главных породообразующих минералов определяют их свойства, а, следовательно, и поведение в массивах горных пород при различных механических, физических и физико-химических воздействиях в естественных условиях залегания и при проведении горных работ. Таким образом, химия силикатов является одним из главных моментов при проектировании и технологии проведения горных работ. Кроме того, многочисленные силикатные минералы и породы широко используются как сырьевые материалы в различных технологических производствах, например, в высокотемпературных процессах (обжиг, спекание, плавление) при производстве:

  1. цемента (глины, карбонаты, мергели);

  1. глазурей, стекол (полевые шпаты, пегматиты, нефелины, и другие алюмосиликаты, циркон);

  1. легких заполнителей и

  1. огнеупоров, керамических изделий (глины, каолины, силлиманиты, циркон);

  1. форстеритовых огнеупоров (дуниты, оливиновые минералы, тальк, асбестовые отходы);

  1. фарфора (глины, каолины и др.);

  1. изоляторов (тальк);

  1. каменных материалов (глины).

Группа силикатов используется без обжига в качестве:

  1. адсорбентов для очистки газов и вод (бентонитовые глины, цеолиты);

  1. компонента буровых растворов (бентонитовые высокодисперсные глины);

  1. наполнителя при производстве бумаги, резины (каолины, тальк);

  1. драгоценных камней (изумруд, топаз, цветные турмалины, хризотил, голубые аквамарины и др.).



2. Основные области применения соединений кремния в народном хозяйстве.


Как видно из вышеописанного большая часть силикатов используется в основном в строительстве. Также нельзя приуменьшать роль соединений кремния в таких отраслях промышленности, как производство товаров широкого потребления (посуды, стеклоизделий и т.д.), и ювелирной промышленности.

2.1. Строительные материалы.


Производство строительных материалов - одно из самых важных и многотоннажных производств, поэтому оно заслуживает более пристального внимания.

2.1.1. Кирпич.


Кирпич является самым древним строительным материалом. Хотя вплоть до нашего времени широчайшее распространение имел во многих странах необожённый кирпич-сырец, часто с добавлением в глину резанной соломы, применение в строительстве обожженного кирпича также восходит к глубокой древности ( постройки в Египте, 3-2-е тысячелетие до н.э. ). Особенно важную роль играл кирпич в зодчестве Месопотамии и Древнего Рима, где из кирпича (45х30х10) выкладывали сложные конструкции, в том числе арки, своды и т.п. Ярким примером использования кирпичного строительства в России времён Иоанна 3 стало строительство стен и храмов Московского Кремля, которым заведовали итальянские мастера. “... и кирпичную печь устроили за Андрониковым монастырём, в Калитникове, в чём ожигать кирпич и как делать, нашего Русскаго кирпича уже да продолговатее и твёрже, когда его нужно ломать, то водой размачивают. Известь же густо мотыками повелели мешать, как на утро засохнет, то и ножем невозможно расколупить.” До 19-го века техника производства кирпича оставалась примитивной и трудоёмкой. Формовали кирпич вручную, сушили только летом, обжигали в напольных печах-времянках, выложенных из высушенного кирпича-сырца. В середине 19-го века были построены кольцевая обжиговая печь и ленточный пресс, обусловившие переворот в технике производства кирпича. В это же время появились глинообрабатывающие машины бегуны, вальцы, глиномялки. В наше время более 80% всего кирпича производят предприятия круглогодичного действия, среди которых имеются крупные механизированные заводы, производительностью свыше 200млн. шт. в год.

Как следует из Большой Советской Энциклопедии, “строительный кирпич - искусственный камень правильной формы, сформированный из минеральных материалов и приобретающий камнеподобные свойства после обжига или обработки паром. По виду исходного сырья и по способу изготовления различают силикатный кирпич (известково-песчянный ), получаемый автоклавным способом, и глиняный обожженный ( обыкновенный и лицевой ).”

Для производства обыкновенного строительного кирпича применяют всевозможные простые сорта легкосплавных песчанистых глин, а иногда и мергелистые глины, не содержащие вредных примесей грубых камней, известковых “ дутиков”, колчедана, гипса, крупных включений органических веществ и т.п.

При небольших производствах разработку глины производят вручную, а при больших часто применяют экскаваторы и механические лопаты, что также зависит от свойства глины, характера её залегания и т.д. Разработку очень плотных залежей глины производят взрывным способом.

При производстве строительного кирпича подготовка глины производится одним из следующих способов. Глину, подаваемую с карьера, сбрасывают в творильные бетонированные ямы, где она послойно разравнивается, заливается водой и оставляется на 3-4 дня. Затем глину подают сначала в склад или непосредственно на завод для переработки на машинах. По другому способу глину непосредственно с карьера подают на завод к дробильной и увлажняющей машине. В целях получения более однородной массы глину подвергают выветриванию и вымораживанию в невысоких ( около 1м высотой и 2м шириной ) на открытом воздухе. Способ обработки сырья зависит от его характера и рода изделия.

Для выделения камней из глины применяют иногда камневыделительные вальцы. Эти вальцы одновременно перерабатывают глину как гладкие вальцы. Камни подводятся к одному концу вальцов спиралями и по желобу выбрасываются.

Во многих случаях качество глины таково, что она может непосредственно поступать в ящичный питатель ( бешикер ), состоящий из 2-4 отделений, в зависимости от числа смешиваемых сортов глины ( жирной и тощей ). У выходного отверстия питателя помещается вращающийся вал с насаженными на него кулаками или подвижная грабля, которые подают подошедшую к выходному отверстию питателя глину, частично разбивают попадающиеся на пути куски и сбрасывают глину под бегуны. Под бегунами глина хорошо размалывается и продавливается через дырчатую тарелку бегунов ( величина отверстий около 3 мм. ). В бегуны нередко подбрасывают бракованный сырец . Иногда между питателем и бегунами ( большей частью при производстве черепицы ) устанавливается увлажняющий шнек, куда поступает необходимое количество воды. Добавка воды к массе часто производится во время обработки её бегунами. В этом случае применяют так называемые мокрые бегуны.

Глина из-под бегунов проходит одну или две пары гладких вальцов и поступает в кирпичный ленточный пресс, который соединяют с резательным аппаратом. Проволока резательного автомата отрезает кирпич от глиняной ленты и мгновенно отходит обратно. Отрезанный кирпич попадает ( на ребро ) на подкладочные деревянные рамы, движущиеся на 2-3 см. ниже глиняной ленты. Так как скорость движения рам несколько больше, чем глиняной ленты, то между отрезанными кирпичами образуются промежутки, необходимые при последующей сушке. После расфасовки по рамам, сырец подаётся в сушильную камеру. По заполнении камера плотно запирается и обогревается.

Сушка кирпича производится в сушилах следующих типов с естественной сушкой, с искусственной и комбинированной. Естественные способы применяются главным образом, при небольшой производительности завода. Естественная сушка довольно продолжительна и при большом объёме производства не вполне рентабельна, так как требуется много складского пространства и успех работы в значительной степени зависит от погоды. Для искусственной сушки применяют тепло отработанного пара, остывающего обожженного кирпича, а в некоторых случаях тепло дымовых газов. Нагретый воздух ( 350-400 С ) отсасывается из обжиговой печи эксгаустром и подаётся в сушильную камеру. Благодаря постепенному подъёму температуры, в закрытой сушильной камере с течением времени образуются испарения воды без заметного движения воздуха. Это весьма благоприятно влияет на сушку кирпича, особенно из чувствительных к режиму сушки глин в первый период. Сырец нагревается во влажном воздухе и преждевременного высыхания его поверхности не происходит, а влага равномерно испаряется из всей массы сырца. Для обеспечения равномерности тяги и работы в печи устанавливают вентиляторы. Газы продуктов горения используются для сушки сравнительно реже, т.к. они действуют разрушающим образом на дерево и железо. Их следует пропускать по трубам или каналам под полом сушилки.

Высушенный кирпич при помощи различного рода подъёмников и вагонеток подаётся в печь для обжига. Обжиг кирпича обычно производится в кольцевых печах или “ зиг-заг “, а в последнее время в туннельных печах. Данная операция производится при температуре от 900 до 1000 градусов. При получении же так называемого “железняка” обжиг производится до начала спекания. В зависимости от состава глины и часто от степени обжига изделия получают различную окраску: при нормальном обжиге - красную, при слабом - розовую, при сильном - темно-красную. Имеются также глины, богатые известью, придающие кирпичу желтую или розово - желтую окраску. Хороший стеновой кирпич должен иметь матовую поверхность ( не стекловидную ), при ударе давать звонкий, ясный звук, не иметь трещин на лицевых сторонах ( ложковой и тычковой ), раковин и внутренних пустот. Он должен иметь однородный излом, быть достаточно пористым и лёгким.

Кроме обыкновенного строительного кирпича вырабатываются ещё так называемые фасонные сорта: лекальные (для кладки круглых дымовых труб и сводов), клиновые, карнизные и т.п. Кроме того, делают пустотелые и фасонные кирпичи и легковесные кирпичи, которые получили широкое применение в строительстве.

Облицовочный кирпич (лицевой, фасонный) изготовляется из чистых однородных глин, обладающих повышенной вязкостью и имеющих раннее спекание, с интервалом не менее 100-200 градусов. Глины должны быть свободны от крупных включений и не содержать растворимых солей. Облицовочный кирпич может быть полнотелым или пустотелым и изготовляется как пластическим, так и полусухим способом. Фактура на лицевой поверхности кирпича достигается с помощью приспособленных к мундштуку валиков с обработанной рельефом поверхностью или путём допрессовки сырца в подвяленном состоянии. Облицовочный кирпич применяется, главным образом, для облицовки фасадов зданий (декорирования окон, дверей, карнизов и пр., изготовляется разных профилей.

Легковесный пористый кирпич применяется для возведения стен и как заполнитель каркасных зданий. Отличается от обычного строительного кирпича меньшей теплопроводностью. Он изготовляется из смеси глины с древесными опилками, торфом или другими органическими материалами, которые при обжиге выгорают и оставляют в массе кирпича поры. Для изготовления легковесного кирпича применяют жирные чистые глины, не содержащих посторонних включений. Технология производства в основном аналогична технологии производства обычного строительного кирпича.

Сухой способ производства строительного кирпича не требует устройства специальных дорогостоящих сушильных установок, так как отпрессованный кирпич, не подвергаясь сушке, непосредственно или после вылеживания в течении суток поступает в обжиговую печь. При производстве кирпича методом сухого прессования используют тощие глины. В процессе производства принимают участие прессы ударного действия, рычажные и револьверные. Обжиг происходит в печах типа гофманских и реже “зиг-заг”, а также в туннельных печах с небольшим сечением обжигательного канала, чтобы избежать значительных перепадов температур. Температура обжига колеблется от 950 до 1100 градусов и редко выше.


2.1.1.Цемент.


Цемент применяется для получения бетона, а также для скрепления кирпичей при строительстве. Наиболее широко применяемой разновидностью цемента является портландцемент.

Портландцемент - важнейший гидравлический вяжущий материал, имеющий широкое применение в строительстве. Портландцементом называется продукт тонкого помола цементного клинкёра, который получают обжигом до спекания искусственной смеси (известняка, мела, глины, и др.) или природного сырья надлежащего состава, обеспечивающих в цементе преобладанием силикатов кальция. При измельчении клинкёра вводят добавки: 1.5-3.5% гипса (в перерасчете на ангидрид серной кислоты SO3) для регулирования сроков схватывания, до 15% активных минеральных добавок - для улучшения некоторых свойств и снижения стоимости цемента.

К основным техническим свойствам портландцемента относят - плотность и объёмную насыпную массу, тонкость помола, сроки схватывания, равномерность изменения объёма цементного теста и прочность затвердевшего цементного раствора.

Плотность цемента находится в пределах 3.0-3.2 г/см3, объемная насыпная масса в рыхлом состоянии составляет 900-1100 кг/м3 и до 1700 кг/м3 - в уплотнённом.,

Тонкость помола характеризует степень измельчения цемента и устанавливается ситовым анализом (просеиванием через определённые сита). Более точный характеристикой степени измельчения цемента является его удельная поверхность, т.е. поверхность всех зёрен, содержащихся в 1 г цемента. Тонкость помола в значительной степени влияет на прочность цементного камня. Чем более тонко измельчён цемент (до известного предела), тем выше прочность цементного камня.

В соответствии с требованиями ГОСТ 10178-62 тонкость помола должна быть такой, чтобы через сито №008 проходило не менее 85% от всей навески портландцемента. Удельная поверхность обычного портландцемента находится в пределах 2000-3000 см2/г и 3000-5000 см2/г - быстротвердеющих и высокопрочных цементов.

Сроки схватывания цементного теста (цемент + вода) зависят от тонкости помола, минерального состава и водопотребности цемента. При этом водопотребность характеризуется количеством воды в процентах от массы цемента, необходимой для получения теста нормальной густоты, т.е. определённой подвижности (24-28%).

Начало схватывания должно наступать не ранее 45 минут, а конец не позднее 12 часов. За начало схватывания принимают время, прошедшее от начала затворения цемента водой до начала загустевания цементного теста: а за конец - время от начала затворения теста до полной потери им пластичности.

С повышением температуры схватывания цементного теста ускоряется, с понижением - замедляется.

За период схватывания, которое завершается относительно быстро (несколько часов), следует продолжительный процесс превращения цементного теста в цементный камень.


2.2. Изделия широкого потребления.


Товарами широкого потребления называются товары, используемые населением повсеместно в течение жизни. Среди товаров широкого потребления широко распространена продукция силикатной промышленности в виде фаянса и фарфора.





2.2.1. Фарфор.

Фарфор - основной представитель тонкой керамики. Характерные признаки фарфора - белый цвет с синеватым оттенком, малая пористость и высокая прочности, термическая и химическая стойкость и природная декоративность. Его особенности определяются химическим составом и строением черепка, которые зависят от назначения изделия, условий их эксплуатации и предъявляемых к ним требований.

Состав керамической массы и метод ее подготовки определяют исходя из назначения из назначения изделия, его формы и вида сырья. Цель подготовки сырья - разрушение природной структуры материалов до мельчайших частиц для получения однородной массы и ускорения взаимодействия частиц в процессе фарфорообразования. Ее проводят в основном пластическим способом, который обеспечивает получение равномерной по составу массы.

Пластичные материалы (глину, каолин) распускают в воде в лопастных мешалках. Полученную массу в виде суспензии пропускают через сито (3600 - 4900 отверстий на 1 см2) и электромагнит для удаления крупных включений и железистых примесей.

Отощающие материалы и плавни сортируют, освобождают от посторонних вредных примесей. Кварц, полевой шпат, пегматит и другие компоненты подвергают обжигу при температуре 900-1000°С. При этом кварц претерпевает полиформные изменения, в результате которых растрескивается. Это, во-первых, облегчает помол, а во-вторых, позволяет удалить куски, загрязненные железистыми примесями, так как при обжиге кварц с примесями железистых соединений приобретает желто-коричневый цвет.

Каменистые материалы, в том числе и фарфоровый бой, промывают, подвергают дроблению и грубому помолу на бегунах, после чего просеивают. Тонкий помол производят в шаровых мельницах с фарфоровыми или уралитовыми шарами. Для интенсификации помола в мельницу вводят поверхностно-активную добавку - сульфитно-спиртовую барду (от 0,5 до 1%), которая, заполняя микротрещины, оказывает как бы расклинивающее действие. Помол ведут до остатка 1-2% на сите с 10 000 отверстий на 1 см2.

Пластичные и отощающие материалы, плавни и фарфоровый бой тщательно смешивают в мешалке пропеллерного типа. Однородную массу пропускают через сито и электромагнит и обезвоживают в специальных фильтр-прессах или вакуум-фильтрах. Полученную пластичную массу влажностью 23-25% направляют на две недели на вылеживание в помещение с высокой влажностью. При вылеживании происходят окислительные и микробиологические процессы, гидролиз полевого шпата и образование кремниевой кислоты, что способствует разрыхлению массы, дальнейшему разрушению природной структуры материалов и повышению пластических свойств массы. После вылеживания массу обрабатывают на массомялках и вакуум-прессах для удаления включений воздуха, а также пластичности и других физико-механических свойств, необходимых для формирования изделий.

Формуют керамические изделия в основном пластическим методом и методом литья, а также полусухим прессованием.

При пластическом формовании используют массу влажностью 22-24%, из которой в зависимости от формы получают заготовки в виде пластов. Для формования применяют полуавтоматы или автоматы. При изготовлении плоских изделий помещают глиняный пласт, который разравнивают роликом при вращении формы. Для получения полых изделий, например чашек, заготовку массы помещают в форму и раскатывают специальным профильным роликом. Промежуток между роликом и формой заполняется слоем массы необходимой толщины. Наружная поверхность изделия формуется поверхностью формы, а внутренняя - роликом. Если на внутренней поверхности формы имеется углубленный рисунок, то он точно воспроизводится на наружной поверхности изделия.

Методом литья в гипсовые формы изготавливают изделия сложной формы и емкостные, например чайники, художественно-декоративные предметы. Для получения изделий сложной конфигурации используют разъемные формы. Для формования методом литья готовят сметанообразную массу - шликер влажностью 34-36%. В шликер добавляют для повышения текучести при минимальной влажности 0,1-0,2% электролита, что обеспечивает лучшее заполнение формы.

Полусухое прессование применяют для формирования плоских изделий небольшой толщины, например тарелок. Подготовленную пластичную массу высушивают до влажности 2-3%, тонко измельчают и получают порошок, в который добавляют пластификатор. Из этого порошка формуют изделие в металлических пресс-формах под большим давлением (25-30 МПа). Изделия имеют правильную форму, точные размеры, более высокую механическую прочность и небольшую влажность, что значительно сокращает время сушки перед обжигом.

После формования изделия для подготовки к обжигу - заключительному и наиболее ответственному этапу производства - сушат до остаточной влажности 2-4%. При этом изделие приобретает достаточную для обжига прочность, исключается образование внутренних напряжений, приводящих к появлению трещин, деформации и т.д.

Сушку проводят в две стадии: предварительная стадия (подвяливание) и окончательная.

Для сушки применяют конвейерные, конвекторные (с направленной подачей теплоносителя на изделие), радиационные (с электрическим или газовым обогревом) и комбинированные сушилки, в которых время сушки значительно сокращается.

Теплоносителями являются воздух и лучистая энергия, выделяемая керамическими панелями и другими поверхностями, которые обогреваются газом, реже - лампами накаливания. Все эти сушилки характеризуются высокой производительностью и минимальными затратами ручного труда на загрузку и выгрузку. Современные методы сушки позволяют регулировать температуру и время процесса в зависимости от толщины изделия.

Высушенные изделия перед обжигом зачищают наждачной бумагой, удаляют швы от пресс-форм, посторонние примеси и загрязнения. После зачистки изделия обдувают сжатым воздухом для удаления пыли.

Керамические изделия подвергают, как правило, двукратному обжигу - утельному (до глазурования) и политому (после глазурования). Утельный обжиг в зависимости от состава черепка и назначения фарфоровых изделий проводят при температуре 900-1000°С, а политой - 1350-1400°С. При утельном обжиге удаляет механически и химически связанная влага, черепок приобретает необходимую прочность при достаточной для впитывания глазури пористости. Реакции взаимодействия исходных компонентов массы протекают в твердой фазе.

Для обжига применяют печи непрерывного действия - туннельные, конвейерные с шагающим подом и роликовые щелевые, а также периодического действия - горны. В печах непрерывного действия поддерживается более строгий температурный режим, сокращается время обжига и обеспечиваются нормальные условия работы при загрузке и выгрузке. В качестве топлива используют нефть, газ и электричество (в электропечах).

Фарфоровые изделия после утельного обжига чаще всего глазуруют , а затем обжигают. Тугоплавкую глазурь в виде суспензии наносят методом окунания, обливания и пульверизацией. После глазурования с ножки или верхнего края форфорого изделия счищают глазурь, чтобы предупредить сплавление х с подставкой во время политого обжига или другими изделиями при обжиге "в спарку". Это отличительный признак фарфоровых изделий; фаянсовые изделия полностью покрывают глазурью.

В процессе обжига формируется черепок с необходимыми физическими и химическими свойствами. При политом обжиге происходят расплавление глазури, равномерное ее распределение по всей поверхности изделия и сплавливание с черепком. Строгое соблюдение определенного режима температуры, скорости ее подъема, времени выдержки и газовой среды - непременное условие проведения обжига.

Продолжительность политого обжига в туннельных печах от 18-22 до 32-34ч. На некоторых предприятиях керамические изделия, в том числе и фарфоровые, подвергают однократному бескапсельному обжигу. При этом цикл производства сокращается до 3-5ч, значительно снижается расход топлива, повышается производительность труда, уменьшает себестоимость готовой продукции. Главная задача однократного обжига - обеспечение непромакаемости черепка при глазуровании изделий, высушенных до содержания влаги 1%. С этой целью в массу вводят высушенные до 4-7% трошковской глины или специальных пластифицирующих добавок, способствующих повышению водостойкости, в том числе и некоторые виды пластических масс.

Однократному обжигу подвергают в основном толстостенные изделия - кружки, салатники, масленки, сахарницы, которые при глазуровании без утельного обжига не размокают, не деформируются и не разрушаются.

Изделия украшают подглазурными и надглазурными красками, препаратом золота, растворами солей, красящих окислов и декоративными глазурями с последующим обжигом.

В зависимости от характера поверхности декорирование изделий может быть рельефным и гладким. Рельефное декорирование - это нанесение на поверхность изделий выпуклых ил заглубленных украшений. К выпуклым относится рельеф, получаемый при формовании путем лепки, к заглубленным - врезывание, сверление и вдавливание на поверхности. Различают гладкое дкорирование по сырому черепку, подглазурное и надглазурное.

Вид разделки зависит от назначения и природы изделий. При выборе разделки необходимо учитывать естественную красоту черепка, украшение должно сочетаться с его естественными особенностями и подчеркивать их, а не затушевывать. Для фарфора в основном применяют гладкое надглазурное декорирование, иногда рельефное и подглазурное.

Фарфоровые изделия бытового назначения классифицируют по форме, размерам, наличию глазурного слоя, назначению, комплектности, видам и группам сложности разделок и сортам.

По форме изделия делят на полые и плоские, по размерам - на мелкие и крупные. В зависимости от наличия глазурного слоя различают изделия глазурированные и неглазурированные. По назначению фарфоровые изделия на бытовую посуду, художественно-декоративную и прочие; по комплектности - одиночные и в виде комплектов. Особенностью изделий, входящих в комплект, является единство декоративного оформления, конструкции и формы.

Комплектную посуды по функциональному использованию, та же как и штучные изделия, делят на столовую, кофейную, чайную, закусочную, для вина, пива и воды, прочую и изделия художественно-декоративного назначения. Выпускают ее в виде сервизов, гарнитуров, наборов и подарочных комплектов, предназначенных для двух, четырех, шести и двенадцати человек.


2.2.2. Стекло


Стекло - прозрачный (бесцветный или окрашенный) хрупкий материал. Наиболее распространено силикатное стекло, основной компонент которого оксид кремния. Получают его главным образом при остывании расплава, содержащего кремнезем и часто оксиды магния, кальция, бора, свинца и других. Производство стекла возникло в Древнем Египте около 4000 до нашей эры. Изделия из стекла изготовляют выдуванием, прессованием и отливкой. Стекло широко применяется в различных отраслях техники, строительства, промышленности, в декоративном искусстве, быту (например, оконное, кварцевое стекло). Обработкой кремнеземистого сырья едкими щелочами получают растворимое стекло, водный раствор которого - жидкое стекло. Жидкое стекло - компонент специальных цементов, силикатных красок, глазурей, мыла. Оно используется при флотации, для склеивания бумаги, картона, стекла, дерева (силикатный клей).

Известно, что стекло - это аморфный изотропный материал, получаемый переохлаждением расплавов неметаллических оксидов и бескислородных соединений. Материалами, склонными к переохлаждению и к переходу в стеклообразное состояние, являются главным образом силикаты, бораты, фосфаты.

Что можно сказать об обычном строительном стекле? Для изготовления такого стекла основным сырьем служат: кварцевый песок, известняк, сода или сульфат натрия. Варка строительного силикатного стекла происходит в стекловаренных печах при температуре до 1500 °С. Строительное стекло как строительный материал отличается долговечностью, высокой стойкостью к воздействию влаги, солнечной радиации, перепаду температур, морозостойкостью, невозгораемостью, жесткостью. Плотность обычного стекла - 2500 кг/м2. Основными оптическими показателями стекла являются: светопропускание (прозрачность), светопреломление, отражение, светорассеивание. Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и практически не пропускают ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла 1,46-1,53. Стекло плохо сопротивляется удару, т.е. оно хрупкое: прочность при ударном изгибе составляет около 0,2 МПа. Стекло обладает высокой прочностью на сжатие - 700-1000 МПа и малой прочностью при растяжении - 35-85 МПа. Теплопроводность обычного стекла при температуре до 100оС составляет 0,4 - 0,82 Вт/(моС).

Стекла различаются по своему химическому составу, т.е. массовым или процентным содержанием оксидов, что влияет на его химические и физические свойства.

Существует множество видов стекол, которые охватывают весь спектр применения их в народном хозяйстве:

Закаленное стекло, обладающее повышенной термостойкостью, получают путем нагрева стекла до температуры закалки (540-650 °С) и последующего быстрого равномерного охлаждения. Этим добиваются однородного распределения внутренних напряжений в стекле. Прочность при ударе и предел прочности при изгибе закаленного стекла в 3-4, иногда в 10-15 раз выше, чем обычного. Разрушается в виде мелких осколков с тупыми нережущими краями. Термостойкость - до 175 °С. Применяется в строительстве (двери, перегородки, ограждения), для остекления городского транспорта.

Теплозащитное стекло по своему составу отличается от обычных стекол содержанием окислов железа, кобальта и никеля, благодаря чему приобретает слабый сине-зеленый оттенок. Теплопоглощающее стекло задерживает 70-75% инфракрасных лучей, т.е. в 2-3 раза больше, чем обычное оконное стекло, оставаясь при этом прозрачным для видимого света.

Отражающее стекло используют для уменьшения нагрева солнечными лучами и регулирования освещенности. Эти свойства достигаются путем покрытия, наносимого на стекло в вакуумной камере и образующего с ним единое целое.

Термостойкое (боросиликатное) стекло содержит окись рубидия, окись лития и др. Термостойкие стекла имеют коэффициент линейного расширения около 2-4 х 10-6 С-1 , т.е. в 2-3 раза меньше, чем обычное стекло. Изделия из таких стекол выдерживают перепады температур до 200 °С. Их используют для изготовления термостойких деталей аппаратуры.

Увеолевое стекло - стекло с повышенной прозрачностью в ультрафиолетовой биологической области спектра (при длинах волн 380-240 нм). Изготавливают его на основе кварцевого, силикатных, боросиликатных, фосфатных стекол, не содержащих примесей соединений, поглощающих УФ-лучи (окислов железа, титана, хрома). Увеолевое стекло пропускает 25-75% ультрафиолетовых лучей.

Триплекс - безопасное безосколочное стекло с высокой тепло- и шумоизоляцией.





  1. Заключение.



Таким образом, можно сделать вывод о высокой значимости и незаменимости силикатной промышленности в жизни современного человека. Мы живём в домах, построенных из бетона и кирпича, едим из фарфоровой посуды, украшаем себя природными силикатами, а свои жилища - художественными произведениями из стекла, фаянса и фарфора.



4. Список литературы

1) Н.С. Алексеев, Введение в товароведение непродовольственных товаров - М., Экономика, 1982г.

2) Н.С. Алексеев, Товароведение хозяйственных товаров - М., Экономика, 1984г.

3) Брауэр “Руководство по неорганическому синтезу” том 1 Москва “Мир” 1985

4) Горячев, Зайцев “Руководство по неорганическому синтезу”

5) Корякин “Особо чистые вещества”

6) Ахметов “Общая и неорганическая химия”

А также материалы из интернета.




© Рефератбанк, 2002 - 2017