Вход

d-элементы I-ой группы и их соединения

Реферат по химии
Дата добавления: 23 июня 2006
Язык реферата: Русский
Word, rtf, 476 кб (архив zip, 45 кб)
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу



Оглавление



d-элементы I-ой группы и их соединения

  1. Природные ресурсы – 3

  2. Простые вещества Cu, Ag, Au - 4

  3. Соединения - 6

а)Соединения меди - 6

б)Соединения серебра - 11

в)Соединения золота - 13

Экспериментальная часть - 15

Список использованной литературы - 19




























1.Природные ресурсы. Содержание в земной коре составляет Cu 4,7·10–3 %, Ag 7·-10–6%, Au 5·10–8%. Медь в основном находится в земной коре в виде сульфидных руд. Главные минералы, содержащие медь: халькопирит CuFeS2, халькозин (медный блеск) Cu2S, ковеллин CuS, малахит Сu2(ОН)2СO3. Встречается (но редко) самородная медь. Наиболее крупные медные самородки имеют массу в сотни килограммов.
Самородное серебро также встречается редко. Главным образом, природное серебро находится в виде сульфидных минералов (аргентит – «серебряный
блеск» Ag2S и др.), которые обычно содержатся как примесь в полиметаллических рудах (спутники Сu, Ni, Pb).
3олото, наоборот, встречается преимущественно в самородном состоянии в виде вкраплений в кварц. Иногда (редко) встречаются золотые самородки массой до десятка килограммов. Продуктом разрушения таких пород является золотоносный песок. 3олото, так же как и серебро, может быть примесью в полиметаллических рудах, но содержание в них Аu меньше, чем Ag.



























2. Простые вещества Cu, Ag, Au

Медь, серебро и золото – мягкие блестящие металлы; медь имеет красноватую окраску, золото – желтую. Эти металлы могут быть получены в виде тончайшей проволоки или фольги. Обладают высокой электро- и теплопроводностью. Серебро – наиболее электропроводный из металлов. Некоторые свойства Сu, Ag и Au указаны в табл.

Строение внешней и предвнешней электронных оболочек атома

Cu

Ag

Au

3s2p6d104s1

4s2p6d105s1

5s2p6d106s1

Радиус атома, пм

128

144

144

Энергия ионизации Э, эВ

7,73

7,57

9,23

Радиус иона , пм

98

113

137

Стандартная энтальпия атомизации металла при 250°C, кДж на 1 моль атомов

339

286

354

Плотность, г/см3

8,96

10,5

19,3

Температура плавления, °C

1083

960,5

1063

Температура кипения, °C

2543

2167

2880

Стандартный электродный потенциал процесса

0,520

0,799

1,691



Строение внешних электронных оболочек атомов: Сu 3d104s1, Ag 4d105s1, Au 4f145d106sl.

В атомах элементов Сu, Ag, Au происходит «провал» s-электрона, приводящий к полному заполнению электронами d-орбиталей. Благодаря наличию одного s-электрона во внешнем слое для этих элементов характерна степень окисления +1.
В образовании химических связей могут принимать участие также электроны с d-оболочки, поэтому медь проявляет устойчивую степень окисления +2, а золото +3.


Химическая активность металлов Сu, Ag, Au сравнительно невелика. С кислородом реагирует только медь, благородные металлы Ag и Au не окисляются кислородом даже при нагревании. При комнатной температуре медь практически не взаимодействует со фтором вследствие образования прочной защитной пленки фторида. При нагревании Сu и Ag реагируют с серой, образуя сульфиды Cu2S и Ag2S. Хлориды CuCl2, AgCl, AuCl3 также образуются в результате взаимодействия элементных веществ при нагревании.


Cu, Ag, Аu не вытесняют водород из растворов кислот, так как находятся в ряду напряжений после водорода.



Исключение представляет взаимодействие меди с очень конц. НCl, так как в результате комплексообразования потенциал меди значительно сдвигается в область отрицательных значений:

2Сu + 4НCl ® 2Н[CuCl2] + H2


Аналогичный окислительно-восстановительный процесс, обусловленный комплексообразованием, протекает в растворах цианидов:

2Сu + 4KCN + 2H2O ® 2K[Cu(CN)2] + 2КОН + Н2


Медь и серебро легко окисляются азотной кислотой:

3Сu + 8НNO3(разб.) ® 3Cu(NO3)2 + 2NO + 4H2O



Ag + 2HNO3(конц.) ® AgNO3 + NO2 + H2O

3олото реагирует с селеновой кислотой:

2Au + 6H2SeO4 ® Au2(SeO4)3 + 3H2SeO3 + 3H2O

В азотной кислоте золото не растворяется, но быстро взаимодействует с царской водкой

Для элементов подгруппы 1Б, как и других побочных подгрупп, наблюдается стабилизация высших степеней окисления с увеличением их порядкового номера. Ионы Au+ в водных растворах диспропорционируют на Au0 и Au+3; в водной среде Au+ существует только в виде прочных комплексов, например [Au(CN)2].


Для Сu, Ag, Au весьма характерно комплексообразование, причем связи металл-лиганд в комплексных соединениях этих металлов в значительной степени ковалентны. Доля ковалентной связи велика также в галогенидах этих металлов, поэтому они более легкоплавки и летучи, чем галогениды элементов подгруппы IA.


Медь и серебро обладают высокой каталитической активностью, в частности, высокодисперсное серебро – эффективный катализатор окисления многих органических веществ.

3. Соединения. Соединения элементов подгруппы IБ значительно различаются (различия большие, чем в предшествующих побочных подгруппах), поэтому рассмотрим их отдельно для каждого элемента.


Соединения меди.

С водородом медь непосредственно не взаимодействует. Легко разлагающийся гидрид меди (I) получают, действуя алюмогидридом лития на CuI в эфирном растворе:

4CuI + Li[AlH4] ® СuН+LiH + АlI3


Менее чистый (содержащий воду) гидрид меди СuН получают при восстановлении сульфата меди фосфорноватистой кислотой H3PO2 в водном растворе. Гидрид меди – красно-бурый порошок, легко окисляющийся на воздухе.
С кислородом медь образует два оксида – черный СuО и красный Сu2O. Оксид меди (II) СuО получается при нагревании меди до 400-500° С в присутствии кислорода, выше 1100°С СuО разлагается на Сu2O и O2, поэтому при высокотемпературном окислении меди образуется Сu2O. Оксид СuО удобно получать термическим разложением основного карбоната меди:

Сu2(ОН)2СO3 ® 2СuО + H2O + СO2


Оксид меди (II) легко восстанавливается водородом:

СuО + Н2 Сu + H2O

Оксид меди (I) Сu2O готовят, добавляя к раствору CuSO4 щелочь и восстановитель – глюкозу, гидразин или гидроксиламин (при нагревании). Сначала выпадает желтый осадок высокодисперсного Сu2O, который довольно быстро превращается в красный Сu2O, состоящий из более крупных частиц.


Оба оксида меди Сu2O и СuО не взаимодействуют с водой. С кислотами реагируют с образованием солей Сu+ и Сu+2. Легко растворяются в водном растворе NH3 с образованием комплексных соединений:

Сu2O + 4NH3 + H2O ® 2[Cu(NH3)2]OH (бесцветный)

CuO + 4NH3 + H2O ® [Cu(NH3)4](OH)2 (темно-синий)

Вторая реакция используется для очистки газов от примеси кислорода:
газ подают в сосуд с медными стружками, залитыми раствором NH3, кислород окисляет медь, образовавшийся СuО сразу растворяется и поверхность меди остается чистой, способной далее реагировать с O2.


При сплавлении СuО со щелочами образуются темно-синие кугфаты (II) M2+CuO2.


При действии щелочей на растворы солей Сu осаждается синий гидроксид Сu(ОН)2. Это слабое основание, обладающее в небольшой степени амфотерными свойствами – оно растворяется в концентрированных растворах щелочей с образованием ярко-синих растворов гидроксокупратов (III) М2+[Сu(ОН)4] и в разбавленных кислотах с образованием аквакомплексов [Сu(H2O)6]2+.

Гидроксид меди (II) легко разлагается при нагревании на СuО и H2O. Этот процесс происходит и при кипячении раствора с осадком Сu(ОН)2.




Медь образует два хлорида – белый, мало растворимый в воде CuCl и темно-коричневый (в растворе голубой), хорошо растворимый в воде CuCl2.


Для получения хлорида меди (I) нагревают смесь CuCl2, конц. НCl и порошкообразной меди:

Сu + CuCl2 + 2НCl ® 2H[СuСl2]


Малоустойчивый комплекс H[СuСl2] при сильном разбавлении водой раствора диссоциирует на НCl и CuCl, последний выпадает в осадок.

С хлоридами щелочных металлов CuCl образует хлорокупраты (I), например K[СuСl2] с аммиаком – бесцветные аммиакаты, в частности [Сu(NH3)3]Cl.


При добавлении к раствору CuSO4 иодида калия выделяются иод и белый осадок иодида меди(I):

2CuSO4 + 4KI ® 2CuI? +I2 + 2K2SO4


Эта реакция обусловлена неустойчивостью Cuh, который сразу разлагается. Нестоек также цианид меди(II) Cu(CN)2, поэтому при действии цианидов на растворы солей Сu+2 образуется CuCN (осадок) и дициан C2N2. Осадок CuI растворяется при действии Na2S2O3:

CuI + 2Na2S2O3 ® Na3[Сu(S2O3)2] + NaI


Не все соли Сu+ устойчивы в водном растворе. Так, получаемый действием 100%-ной H2SO4 на Сu2O бесцветный сульфат меди(I) Cu2SO4 при внесении в воду сразу диспропорционирует на Сu0 и CuSO4. Такая реакция не происходит с [Сu(NH3)2]2SO4 – комплексообразование обычно стабилизирует неустойчивую степень окисления.






Хлорид меди (II) получают действием НCl на СuО, Сu(ОН)2 или Сu2(ОН)2СO3. При упаривании раствора можно выделить сине-зеленые кристаллы CuCl2·2H2O. Безводную соль получают нагреванием кристаллогидрата в токе хлороводорода (обезвоживание на воздухе дает продукт, загрязненный в результате гидролиза основными солями). С хлоридами щелочных металлов CuCl2 образует хлорокупраты (II), напримерK2[CuCl4]. По cтруктуре CuCl2 – неорганический полимер, в его паре находятся цепные молекулы



В кристаллической решетке эти цепи расположены друг над другом так, что каждый атом Сu окружает 6 атомов Cl, образующих искаженный октаэдр.


Известно много других солей Сu+2. На практике часто применяется синий CuSO4·5H2O – медный купорос. В кристаллической решетке этого соединения ион Сu2+ окружен 4 молекулами H2O, центры которых образуют квадрат, одна молекула H2O является мостиковой и она связана водородными связями с ионом SO42– и одной из молекул H2O, находящихся около иона Сu2+. При нагревании медный купорос обезвоживается. Безводный сульфат CuSO4 бесцветен.


Нитрат меди (II) образует кристаллогидрат Cu(NO3)2·6H2O синего цвета. Нагреванием этого соединения нельзя получить безводный нитрат, так как происходит разложение:

2Cu(NO3)2 ® 2CuO + 4NO2 + O2


Безводный нитрат меди (II) (сине-зеленая окраска) получают взаимодействием меди с жидким N2O4).


При действии на растворы, содержащие Cu2+, карбонатов щелочных металлов образуется основной карбонат меди (зеленовато-голубой осадок):

2CuSO4 + 2Na2CO3 + H2O ® Сu2(ОН)2СO3 + 2Na2SO4 + СO2


Ионы S2– дают с Сu2+ черный осадок сульфида меди (II) CuS. Черный сульфид меди (I) Cu2S получают взаимодействием меди с серой при нагревании. Это нестехиометрическое соединение, приведенная формула приблизительно отражает его состав.


Известно много комплексов, содержащих Сu2+. Так, при действии избытка водного аммиака на растворы, содержащие ионы Сu2+ образуются комплексы [Cu(NH3)4(H2O)2]2+. Сульфат тетраамминмеди (II) [Cu(NH3)4]SO4·H2O (темно-синие кристаллы) выделяется при добавлении к раствору, содержащему CuSO4 и NH3, этилового спирта, в котором данный комплекс мало растворим.


Известно несколько соединений меди (III), в частности, оксид Сu2O3 (красная окраска):

2Сu(ОН)2 + 2КОН + K2S2O8 ® Сu2O3? + 2K2SO4 + 3H2O


Сu2O3 – очень сильный окислитель.


Достижения последних лет – открытие в 1986-87 гг. керамических высокотемпературных сверхпроводников, содержащих медь в степени окисления больше +2. Эти вещества сравнительно просто получают спеканием соответствующих оксидов. Одно из наиболее употребимых соединений этого типа приближенной формулы YВа2Сu3O7 переходит в сверхпроводящее состояние при ?90К, имеет решетку типа перовскита (см. рис. 3.78), в которую включены слои атомов меди. Аналогичную структуру имеют и другие подобные сверхпроводники (содержат вместо Сu таллий или висмут). Пока нет теории, показывающей связь свойств этих веществ с их химической природой.








Соединения серебра

. Для серебра наиболее распространены соединения Ag+.
При действии щелочей на растворы, содержащие ионы Ag+, выпадает оксид Ag2O (бурый осадок):

2AgNO3 + 2КОН ® Ag2O + 2KNO3 + H2O


Образование этого оксида обусловлено тем, что гидроксид серебра AgOH существует только в очень разбавленном растворе, при выделении он разлагается. Оксид Ag2O немного растворим в воде (0,01 г в 1 л H2O при 20° С); раствор имеет щелочную реакцию, так как AgOH – сильное основание. Поэтому соли Ag+ не подвергаются гидролизу.

Оксид серебра (I) разлагается при 300° С на Ag и O2.


Наиболее широко применяемым соединением серебра является нитрат AgNO3, получаемый растворением металлического серебра в конц. HNO3.


Растворимость галогенидов AgГ уменьшается при переходе от AgF к AgI. Фторид серебра AgF (белый) хорошо растворим в воде, a AgCl (белый),
AgBr (желтоватый), AgI (желтый) выпадают в осадок при взаимодействии с водном растворе Ag+ с F. Хлорид серебра растворяетется в водном аммиаке с образованием амминкомплекса:

AgCl + 2NH3 ® [Ag(NH3)2]Cl


Аналогичная реакция происходит с AgBr, но не идет с AgI,, так как эта соль очень мало растворима (ПР = 8,5·10–17)
Все галогениды серебра растворяются в растворе Na2S2O3

AgГ + 2Na2S2O3 ® Na3[Ag(S2O3)2] +NaГ




Одно из наиболее прочных соединений серебра – сульфид Ag2S (черный). Он образуется при взаимодействии Ag+(p) и S2–(р), а также при действии на серебро H2S и других сернистых соединений (в присутствии кислорода). Этим процессом объясняется постепенное почернение изделий из серебра.


Своеобразными свойствами обладает перхлорат серебра AgClO4. Эта соль хорошо растворима в воде и в органических жидкостях, причем в отличие от большинства солей растворяется также в неполярных растворителях» в частнoсти, в бензоле.


Соединения серебра легко восстанавливаются до Ag0. В определенных условиях серебро выделяется в виде блестящего осадка, прочно закрепляющегося на поверхности реакционного сосуда. На этом основано серебрение стекла. В качестве восстановителей используют различные органические соединения, в частности, формальдегид:

2[Ag(NH3)2]Cl + СH2O + H2О ® 2Ag? + HCOONH4 + 2NH4Cl + NH3


При внесении гранул цинка в залитый водой осадок AgCl происходит вытеснение серебра из очень разбавленного раствора (вследствие малой растворимости AgCl). В этих условиях образуется высокодисперсный осадок Аg, называемый «молекулярным» серебром.


Известно довольно много соединений Ag+2, но они не получили пока значительного применения.

Фторид AgF2 получается при действии фтора на "молекулярное" серебро.

Оксид AgO получают окислением серебра с помощью O3 или действием K2S2O8 на Ag2O в щелочной среде при 90° С.

Известен ряд комплексов Ag+2 .



Соединения золота

Из соединений золота наиболее используются тетрахлороаурат (III) водорода, или тетрахлорозолотая кислота H[AuCl4]·4H2O (желтые игольчатые кристаллы), получаемая растворением золота в царской водке, и хлорид золота AuCl3 (красные игольчатые кристаллы), образующийся при действии хлора на золото.

При растворении AuCl3 в воде образуется гидроксотри-хлороаурат(III) водорода:

AuCl3 + H2O ® H[Au(OH)Cl3]


При действии щелочей на растворы AuCl3 или H[AuCl4] осаждается бурый гидроксид золота (III) Au(ОН)3. При его высушивании образуется метагидроксид AuО(ОН), а при осторожном нагревании до 140-150,°С получается оксид Au2O3, который при нагревании выше 160,°С разлагается на Au и O2.

Гидроксид золота (III) – амфотерное соединение, при его взаимодействии со щелочами образуются гидроксоаураты(III), например желтый К[Au(OH)4]·H2O зеленый Ва[Au(ОН)4]2·5H2O мало растворим в воде.

Известно много комплексов Au+3.


Получен ряд соединений Au+. Так, AuCl образуется при нагревании AuCl3 до 185°С, а AuI получается аналогично CuI при диспропорционировании иодида золота AuI3, образующегося при взаимодействии Au3+ и I в водном растворе.


Соединения золота являются окислителями и восстановливаются легче, чем соединения серебра. Например, в водном растворе быстро происходит реакция с сульфатом железа:

Н[AuCl4] + 3FeSO4 ® Au?+ Fe2(SO4)3 + FeCl3 + HCl


Эту реакцию используют в химическом анализе для отделения золота от других элементов.

Соединения золота (V), (VII). Взаимодействие золота и фторида криптона (II) получен пентафторид золота AuF- кристаллическое вещество красно-коричневого цвета:

2Au + 5KrF = 2AuF + 5Kr

Пентафторид AuF проявляет кислотные свойства, с основными фторидами образует фтороаураты (V), например:

NaF + AuF = Na[AuF]

Известны также соединения типа.; ; .




Соединения Сu, Ag, Au ядовиты, особенно соединения меди.



























Экспериментальная часть


Методики


  1. Реактивы:CuSO4·H2O, концентрированный раствор

NH4OH, спирт, эфир.

Сульфат тетрааммин меди (II) [Cu(NH3)4]SO4 - темно синие крупные, ромбические кристаллы, растворимые в воде, не растворимые в спирте; при нагревании до 120°C теряют воду и часть аммиака, при 260°C теряет весь аммиак. При хранении не воздухе соль разлагается.

Ход работы:

Измельченный в тонкий порошок медный купорос (CuSO4·5H2O) в количестве 10 г растворяют в смеси 15 мл концентрированного раствора аммиака и 10 мл воды. К раствору прибавляют около 15-20 мл спирта и раствором аммиака, затем смесью спирта с эфиром и высушивают при 50-60°C.

(методика: В.Н. Табунченкр, Л.Г. Голубовская)


2) Реактивы: (CuSO4·5H2O), аммиак, 10 %-ый (по массе) раствор, этиловый спирт.

Ход работы:

В стакане растворяют 20 г(CuSO4·5H2O) в 70 мл аммиака. В

цилиндр вместимостью 200 мл наливают 70 мл спирта,

через капельную воронку вводят 10 мл воды, а под слой

вводят аммиачный раствор сульфата меди (II):


CuSO4 + 4NH3·H2O = [Cu(NH3)4]SO4·H2O + 3H2O


Через некоторое время образуются крупные темно-синие кристаллы. Если аммиачный раствор меди налить непосредственно в спирт, то получаются мелкие кристаллы. Кристаллы извлекают из цилиндра, отжимают между листами фильтровальной бумаги, высушивают при 30-40°C и хранят в плотно закрывающейся склянке.



3) CuSO4 + 4NH3·H2O = [Cu(NH3)4]SO4 + 4H2O

Медный купорос измельчают в тонкий порошок и 10 г его растворяют в смеси 15 мл концентрированного раствора аммиака и 10 мл воды. К раствору прибавляют около 15-20 мл спирта и смесь охлаждают. Кристаллы отфильтровывают, промывают смесью спирта с раствором аммиака и высушивают при 50-60°C.

Комплекс – кристаллический порошок голубого цвета ромбической структуры.

4) Отвесить на технохимических весах 8,75 г пентагидрата сульфата меди и поместить в химический стакан. Рассчитать количество 25 % раствора аммиака, необходимое для образования комплексного соединения; отмерить мензуркой удвоенный объем (для увеличения выхода продукта, т.к. растворимость комплексного соединения уменьшается при добавлении аммиака). Растворить в стакане взвешенную соль в отмеренном количестве аммиака и тщательно перемешать стеклянной палочкой до полного растворения соли. К полученному раствору добавить 10 мл этилового спирта (растворимость комплексного соединения в спирте меньше, чем в воде) и оставить кристаллизоваться не 20=25 минут.

Отфильтровать выпавшие кристаллы на воронке Бюхнера и отсоединить колбу с воронкой от насоса. Затем промыть кристаллы на фильтре 2 раза смесью равных объемов спирта и 25 % раствора NH3 . Для этого налить в воронку смесь спирта с аммиаком, дать смеси пропитать осадок и снова присоединить колбу к насосу. Если не отключать насос, то спирт слишком быстро проходит через осадок и промывание получается недостаточным. Взвесить на технохимических весах бюкс, перенести в него кристаллы с фильтра и поместить в сушильный шкаф при t=50-60C на 20 мин. Затем охладить и снова взвесить бюкс. Рассчитать выход комплексного соединения по отношению к взятому пентагидрату меди (II).


















Обоснование выбора методики



Более выгодно и удобно использовать методику №4, т.к. она наиболее подробно рассказывает нам сущность нашего опыта, а, следовательно, будет проще и понятней выполнять наш синтез. Также, что немаловажно, нам будет легче защищать нашу курсовую работу.



Оборудование

  • Весы техно – химические

  • Воронка Бюхнера

  • Фарфоровая ступка

  • Водоструйный насос

  • Стакан вместимостью 100 мл

  • Медный цилиндр вместимостью 100 мл




Реактивы

  • Пентагидрат меди (II) = 8,75 г

  • Этанол = 10 мл

  • Раствор аммиака (25%) = 43 мл





















Расчеты


CuSO4 + 4NH3·H2O = [Cu(NH3)4]SO4 + 4H2O


необходимо получить: 8 г [Cu(NH3)4]SO4


решение:

М (комплекса) = 228 г/моль

n (комплекса) = m/М =8/228 =0,035 моль

n (комплекса) = n (CuSO4) =n (CuSO4·5H2O)

n (CuSO4) =0,035 моль

М (CuSO4) = 160 г

m (CuSO4) =n * М= 0,035*160= 5,6 г

М (CuSO4·5H2O)=250 г/моль

n (CuSO4·5H2O)= 0,035 моль


составим пропорцию:


m (CuSO4)М (CuSO4)

m (CuSO4·5H2O)М (CuSO4·5H2O)


5,6160

x250


x=8,75 г m (CuSO4·5H2O)=8,75г


(NH3)=25%

n (NH3)=4* n (комплекса)=4*0,035=0,14 моль

М (NH3· H2O)= 35 г/моль

m (NH3· H2O)=0,14*35=4,9 г

mр-ра ( NH3)=4,9/0,25=19,6 г

р-ра ( NH3)=(0,919+0,913)/2= 0,917 г/мл

Vр-ра ( NH3)=19,6/0,917=21,37 мл


Необходимо взять удвоенный раствор V р-ра ( NH3), т.к. растворимость комплекса уменьшается при добавлении NH3 ( NH3)= 43 мл.

Выход продукта реакции составляет:

=7,575/8=94,68 %





Список использованной литературы



  1. Ахметов Н.С. Общая и неорганическая химия. 3-е изд. М.: Высш. шк., 1998

  2. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М.: Химия, 2001.

  3. Угай Я.А. Общая и неорганическая химия. М.: Высш. шк., 2001.

© Рефератбанк, 2002 - 2017