Вход

Нахождение объема бетонной строительной конструкции

Реферат по технологиям
Дата добавления: 09 октября 2010
Язык реферата: Русский
Word, rtf, 2.9 Мб (архив zip, 180 кб)
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу








"Основы системного анализа"















Задание


Найти объем бетонной строительной конструкции по данным периферического, серединного и корневого сечений.


Решение


Найдем площадь периферического поперечного сечения строительной конструкции по данным таблицы:


x

Выпуклая часть переф. сечения

Вогнутая часть переф. сечения

0

2,5

0

22

17

12

42

28,5

23

62

37,5

31

82

46

38

102

51

44

122

54

48

142

55

50


Проведем аппроксимацию выпуклой и вогнутой кривых с помощью Excel.

Как базовую функцию используем полином второго порядка:


f(x) = ao + a1 ? x + a2 ? x2


В результате получим диаграммы с уравнениями аппроксимации для периферического сечения:




В результате решения получаем ao = 2,2293 , a1 =0,7367, a2 = -0,0026 для выпуклой части и ao = -0,2685 , a1 = 0,6243 , a2 = -0,0019 – для вогнутой.

Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.



Тогда площадь периферического сечения равна:


Sп = Sп,вг – Sп,вг = 5262,5 – 4442,7 = 819,8 (дм2) .



Аналогично для серединного сечения по данным таблицы:

x

Выпуклая часть серединного сечения

Вогнутая часть серединного сечения

0

2,5

0

22

19,5

13

42

31,5

22

62

40

28

82

43

31

102

41

30

122

35

25


Получим диаграммы с уравнениями аппроксимации для серединного сечения:



В результате решения получаем ao = 1,9825 , a1 = 0,9488, a2 = -0,0055 для выпуклой части и ao = -0,3669 , a1 = 0,715 , a2 = -0,0041 – для вогнутой.

Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.




Тогда площадь периферического сечения равна:


Sп = Sп,вг – Sп,вг = 4598 – 3243,3 = 1354,7 (дм2) .


Аналогично для серединного сечения по данным таблицы:

x

Выпуклая часть корневого сечения

Вогнутая часть корневого сечения

0

2,5

0

22

26

13,3

42

39,8

20,6

62

43,2

21,8

82

36,2

16,7


Получим диаграммы с уравнениями аппроксимации для серединного сечения:



В результате решения получаем ao = 2,1378 , a1 = 1,3828, a2 = -0,0118 для выпуклой части и ao = -0,1908 , a1 = 0,7897 , a2 = -0,0071 – для вогнутой.

Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.



Тогда площадь периферического сечения равна:


Sп = Sп,вг – Sп,вг = 2982,7 – 1158,3 = 1824,4 (дм2) .


Для расчета целевой функции V(a0, … a12) получим аналитическую зависимость F(z). Для этого проведем аппроксимацию полученных ранее данных с помощью Excel:


F(z) = b0 + b1? z + b2? z2



F(z)

0

1824,4

102

1354,7

202

819,8




F(0)= 1824,4 F(102)= 1354,7 F(202)= 819,8 b0 =1824,4 b1 = - 4,2292

b2= -0,0037 F(z) =1824,4 – 4,2292? z – 0,0037? z2


Далее, интегрируя, получим



Ответ: V = 272079 дм3

© Рефератбанк, 2002 - 2017