"Основы системного анализа"
Задание
Найти объем бетонной строительной конструкции по данным периферического, серединного и корневого сечений.
Решение
Найдем площадь периферического поперечного сечения строительной конструкции по данным таблицы:
x |
Выпуклая часть переф. сечения |
Вогнутая часть переф. сечения |
0 |
2,5 |
0 |
22 |
17 |
12 |
42 |
28,5 |
23 |
62 |
37,5 |
31 |
82 |
46 |
38 |
102 |
51 |
44 |
122 |
54 |
48 |
142 |
55 |
50 |
Проведем аппроксимацию выпуклой и вогнутой кривых с помощью Excel.
Как базовую функцию используем полином второго порядка:
f(x) = ao + a1 ? x + a2 ? x2
В результате получим диаграммы с уравнениями аппроксимации для периферического сечения:
В результате решения получаем ao = 2,2293 , a1 =0,7367, a2 = -0,0026 для выпуклой части и ao = -0,2685 , a1 = 0,6243 , a2 = -0,0019 – для вогнутой.
Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.
Тогда площадь периферического сечения равна:
Sп = Sп,вг – Sп,вг = 5262,5 – 4442,7 = 819,8 (дм2) .
Аналогично для серединного сечения по данным таблицы:
x |
Выпуклая часть серединного сечения |
Вогнутая часть серединного сечения |
0 |
2,5 |
0 |
22 |
19,5 |
13 |
42 |
31,5 |
22 |
62 |
40 |
28 |
82 |
43 |
31 |
102 |
41 |
30 |
122 |
35 |
25 |
Получим диаграммы с уравнениями аппроксимации для серединного сечения:
В результате решения получаем ao = 1,9825 , a1 = 0,9488, a2 = -0,0055 для выпуклой части и ao = -0,3669 , a1 = 0,715 , a2 = -0,0041 – для вогнутой.
Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.
Тогда площадь периферического сечения равна:
Sп = Sп,вг – Sп,вг = 4598 – 3243,3 = 1354,7 (дм2) .
Аналогично для серединного сечения по данным таблицы:
x |
Выпуклая часть корневого сечения |
Вогнутая часть корневого сечения |
0 |
2,5 |
0 |
22 |
26 |
13,3 |
42 |
39,8 |
20,6 |
62 |
43,2 |
21,8 |
82 |
36,2 |
16,7 |
Получим диаграммы с уравнениями аппроксимации для серединного сечения:
В результате решения получаем ao = 2,1378 , a1 = 1,3828, a2 = -0,0118 для выпуклой части и ao = -0,1908 , a1 = 0,7897 , a2 = -0,0071 – для вогнутой.
Определим площади Sп,в и под выпуклой и вогнутой кривыми как определенные интегралы функции f(x) на интервале (0;142) с соответствующими коэффициентами.
Тогда площадь периферического сечения равна:
Sп = Sп,вг – Sп,вг = 2982,7 – 1158,3 = 1824,4 (дм2) .
Для расчета целевой функции V(a0, … a12) получим аналитическую зависимость F(z). Для этого проведем аппроксимацию полученных ранее данных с помощью Excel:
F(z) = b0 + b1? z + b2? z2
|
F(z) |
0 |
1824,4 |
102 |
1354,7 |
202 |
819,8 |
F(0)= 1824,4 F(102)= 1354,7 F(202)= 819,8 b0 =1824,4 b1 = - 4,2292
b2= -0,0037 F(z) =1824,4 – 4,2292? z – 0,0037? z2
Далее, интегрируя, получим
Ответ: V = 272079 дм3