Вход

Формулы по математике и геометрии за весь школьный курс

Реферат по математике
Дата добавления: 20 июня 2006
Язык реферата: Русский
Word, rtf, 439 кб (архив zip, 30 кб)
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу



Формулы сокр. умножения и разложения на множители :

(ab)=a2ab+b

(ab)=a3ab+3abb

a-b=(a+b)(a-b)

ab=(ab)(a?ab+b),

(a+b)=a+b+3ab(a+b)

(a-b)=a-b-3ab(a-b)

xn-an=(x-a)(xn-1+axn-2+axn-3+...+an-1)

ax+bx+c=a(x-x1)(x-x2)

где x1 и x2  корни уравнения

ax+bx+c=0

Степени и корни :

apag = ap+g

ap:ag=a p-g

(ap)g=a pg

ap /bp = (a/b)p

apbp = abp

a0=1; a1=a

a-p = 1/a

pa =b => bp=a

papb = pab

a ; a  0

____

/ __ _

p ga = pga

___ __

pkagk = pag

p ____

/ a pa

/  = 

 b pb

a 1/p = pa

pag = ag/p


Квадратное уравнение

ax+bx+c=0; (a0)

x1,2= (-bD)/2a; D=b -4ac

D>0 x1x2 ;D=0 x1=x2

D<0, корней нет.

Теорема Виета:

x1+x2 = -b/a

x1 x2 = c/a

Приведенное кв. Уравнение:

x + px+q =0

x1+x2 = -p

x1x2 = q

Если p=2k (p-четн.)

и x+2kx+q=0, то x1,2 = -k(k-q)

Нахождение длинны отр-ка

по его координатам

((x2-x1)-(y2-y1))

Логарифмы:

loga x = b => ab = x; a>0,a0

a loga x = x, logaa =1; loga 1 = 0

loga x = b; x = ab

loga b = 1/(log b a)

logaxy = logax + loga y

loga x/y = loga x - loga y

loga xk =k loga x (x >0)

logak x =1/k loga x

loga x = (logc x)/( logca); c>0,c1

logbx = (logax)/(logab)

Прогрессии

Арифметическая

an = a1 +d(n-1)

Sn = ((2a1+d(n-1))/2)n

Геометрическая

bn = bn-1  q

b2n = bn-1 bn+1

bn = b1qn-1

Sn = b1 (1- qn)/(1-q)

S= b1/(1-q)

Тригонометрия.

sin x = a/c

cos x = b/c

tg x = a/b=sinx/cos x

ctg x = b/a = cos x/sin x

sin (-) = sin 

sin (/2 -) = cos 

cos (/2 -) = sin 

cos ( + 2k) = cos 

sin ( + 2k) = sin 

tg ( + k) = tg 

ctg ( + k) = ctg 

sin  + cos  =1

ctg  = cos / sin ,   n, nZ

tg  ctg = 1,   (n)/2, nZ

1+tg = 1/cos , (2n+1)/2

1+ ctg =1/sin ,  n

Формулы сложения:

sin(x+y) = sin x cos y + cos x sin y

sin (x-y) = sin x cos y - cos x sin y

cos (x+y) = cos x cos y - sin x sin y

cos (x-y) = cos x cos y + sin x sin y

tg(x+y) = (tg x + tg y)/ (1-tg x tg y )

x, y, x + y  /2 + n

tg(x-y) = (tg x - tg y)/ (1+tg x tg y)

x, y, x - y  /2 + n

Формулы двойного аргумента.

sin 2 = 2sin  cos 

cos 2 = cos  - sin  = 2 cos  - 1 =

= 1-2 sin

tg 2 = (2 tg)/ (1-tg)

1+ cos  = 2 cos /2

1-cos = 2 sin /2

tg = (2 tg (/2))/(1-tg(/2))

Ф-лы половинного аргумента.

sin /2 = (1 - cos )/2

cos/2 = (1 + cos)/2

tg /2 = sin/(1 + cos ) = (1-cos )/sin 

  + 2n, n Z

Ф-лы преобразования суммы в произв.

sin x + sin y = 2 sin ((x+y)/2) cos ((x-y)/2)

sin x - sin y = 2 cos ((x+y)/2) sin ((x-y)/2)

cos x + cos y = 2cos (x+y)/2 cos (x-y)/2

cos x - cos y = -2sin (x+y)/2 sin (x-y)/2

sin (x+y)

tg x + tg y = —————

cos x cos y

sin (x - y)

tg x - tgy = —————

cos x cos y

Формулы преобр. произв. в сумму

sin x sin y = (cos (x-y) - cos (x+y))

cos x cos y = (cos (x-y)+ cos (x+y))

sin x cos y = (sin (x-y)+ sin (x+y))


Соотнош. между ф-ями

sin x = (2 tg x/2)/(1+tg2x/2)

cos x = (1-tg2 2/x)/ (1+ tg x/2)

sin2x = (2tgx)/(1+tg2x)

sin = 1/(1+ctg) = tg/(1+tg)

cos = 1/(1+tg) = ctg / (1+ctg)

ctg2 = (ctg-1)/ 2ctg

sin3 = 3sin -4sin = 3cossin-sin

cos3 = 4cos-3 cos=

= cos-3cossin

tg3 = (3tg-tg)/(1-3tg)

ctg3 = (ctg-3ctg)/(3ctg-1)

sin /2 = ((1-cos)/2)

cos /2 = ((1+cos)/2)

tg/2 = ((1-cos)/(1+cos))=

sin/(1+cos)=(1-cos)/sin

ctg/2 = ((1+cos)/(1-cos))=

sin/(1-cos)= (1+cos)/sin


sin(arcsin ) = 

cos( arccos ) = 

tg ( arctg ) = 

ctg ( arcctg ) = 

arcsin (sin) =  ;  [-/2 ; /2]

arccos(cos ) =  ;   [0 ; ]

arctg (tg ) =  ;  [-/2 ; /2]

arcctg (ctg ) =  ;   [ 0 ; ]

arcsin(sin)=

1) - 2k; [-/2 +2k;/2+2k]

2) (2k+1) - ; [/2+2k;3/2+2k]

arccos (cos) =

1) -2k ; [2k;(2k+1)]

2) 2k- ; [(2k-1); 2k]

arctg(tg)= -k

(-/2 +k;/2+k)

arcctg(ctg) =  -k

(k; (k+1))

arcsin = -arcsin (-)= /2-arccos =

= arctg /(1-)

arccos = -arccos(-)=/2-arcsin =

= arc ctg/(1-)

arctg =-arctg(-) = /2 -arcctg =

= arcsin /(1+)

arc ctg  = -arc cctg(-) =

= arc cos /(1-)

arctg  = arc ctg1/ =

= arcsin /(1+)= arccos1/(1+)

arcsin  + arccos = /2

arcctg  + arctg = /2

Тригонометрические уравнения

sin x = m ; |m|  1

x = (-1)n arcsin m + k, k Z

sin x =1 sin x = 0

x = /2 + 2k x = k

sin x = -1

x = -/2 + 2 k

cos x = m; |m|  1

x =  arccos m + 2k

cos x = 1 cos x = 0

x = 2k x = /2+k

cos x = -1

x = + 2k

tg x = m

x = arctg m + k

ctg x = m

x = arcctg m +k

sin x/2 = 2t/(1+t2); t - tg

cos x/2 = (1-t)/(1+t)

Показательные уравнения.

Неравенства: Если af(x)>(<) aа(ч)

1) a>1, то знак не меняеться.

2) a<1>

Логарифмы : неравенства:

logaf(x) >(<) log a (x)

1. a>1, то : f(x) >0

(x)>0

f(x)>(x)

2. 00

(x)>0

f(x)<(x)

3. log f(x) (x) = a

ОДЗ: (x) > 0

f(x) >0

f(x )  1

Тригонометрия:

1. Разложение на множители:

sin 2x - 3 cos x = 0

2sin x cos x -3 cos x = 0

cos x(2 sin x - 3) = 0

....

2. Решения заменой ....

3.

sin x - sin 2x + 3 cos x =2

sin x - 2 sin x cos x + 3 cos  x = 2 sin x + cos x

Дальше пишеться если sin x = 0, то и cos x = 0,

а такое невозможно, => можно поделить на cos x


Тригонометрические нер-ва :

sin   m

2k+1    2+ 2k

2k+2   (1+2)+ 2k

Пример:

I cos (/8+x) < 3/2

k+ 5/6< /8 +x< 7/6 + 2k

2k+ 17/24 < x< /24+2k;;;;

II sin   1/2

2k +5/6  13/6 + 2k

cos  () m

2k + 1 < < 2+2 k

2k+2< < (1+2) + 2k

cos   - 2/2

2k+5/4  11/4 +2k

tg () m

k+ arctg m  arctg m + k

ctg () m

k+arcctg m < < +k


Производная:

(xn) = n xn-1

(ax)’ = ax ln a

(lg ax )’= 1/(xln a)

(sin x)’ = cos x

(cos x)’ = -sin x

(tg x)’ = 1/cos x

(ctg x)’ = - 1/sinx

(arcsin x)’ = 1/ (1-x)

(arccos x)’ = - 1/ (1-x)

(arctg x)’ = 1/ (1+x)

(arcctg x)’ = - 1/ (1+x)

Св-ва:

(u  v)’ = u’v + uv’

(u/v)’ = (u’v - uv’)/ v

Уравнение касательной к граф.

y = f(x0)+ f ’(x0)(x-x0)

уравнение к касательной к графику в точке x

1. Найти производную

2. Угловой коофициент k =

= производная в данной точке x

3. Подставим X0, f(x0), f ‘ (x0), выразим х


Интегралы :

 xn dx = xn+1/(n+1) + c

 ax dx = ax/ln a + c

 ex dx = ex + c

 cos x dx = sin x + cos

 sin x dx = - cos x + c

 1/x dx = ln|x| + c

 1/cos x = tg x + c

 1/sin x = - ctg x + c

 1/(1-x) dx = arcsin x +c

 1/(1-x) dx = - arccos x +c

 1/1+ x dx = arctg x + c

 1/1+ x dx = - arcctg x + c


Площадь криволенейной трапеции.

Геометрия

Треугольники

 +  +  =180

Теорема синусов

a = b+c - 2bc cos 

b = a+c - 2ac cos 

c = a + b - 2ab cos 

Медиана дели треуг. на два равновеликих. Медиана делит

противопол. сторону напополам.

Биссектриса - угол.

Высота падает на пр. сторону

под прямым углом.

Формула Герона :

p=(a+b+c)

_____________

S = p(p-a)(p-b)(p-c)

S = ab sin 

Sравн.=(a3)/4

S = bh/2

S=abc/4R

S=pr

Трапеция.


S = (a+b)/2 h

Круг

S= R

Sсектора=(R)/360

Стереометрия

Параллепипед

V=SоснР

Прямоугольный

V=abc

Пирамида

V =1/3Sосн.H

Sполн.= Sбок.+ Sосн.

Усеченная :

H . _____

V = 3 (S1+S2+S1S2)

S1 и S2 — площади осн.

Sполн.=Sбок.+S1+S2

Конус

V=1/3 RH

Sбок. =Rl

Sбок.= R(R+1)

Усеченный

Sбок.= l(R1+R2)

V=1/3H(R12+R1R2+R22)

Призма

V=Sосн.H

прямая: Sбок.=Pосн.H

Sполн.=Sбок+2Sосн.

наклонная :

Sбок.=Pпсa

V = Sпсa, а -бок. ребро.

Pпс — периметр

Sпс — пл. перпенд. сечения

Цилиндр.

V=RH ; Sбок.= 2RH

Sполн.=2R(H+R)

Sбок.= 2RH

Сфера и шар .

V = 4/3 R - шар

S = 4R - сфера

Шаровой сектор

V = 2/3 RH

H - высота сегм.

Шаровой сегмент

V=H(R-H/3)

S=2RH









































































































град





0

30

45

60

90

120

135


180



-/2

-/3

-/4

-/6

0

/6

/4

/3

/2

2/3

3/4

3/6



sin

-1

-3/2

-2/2

- 

0



2/2

3/2

1



- 

0

cos





1

3/2

2/2



0

- 

-2/2

- 3/2

-1

tg



-3

-1

-1/3

0

1/3

1

3



-3

-1


0

ctg





---

3

1

1/3

0

-1/3

-1


--











n

2

3

4

5

6

7

8

9

2

4

9

16

25

36

49

64

81

3

8

27

64

125

216

343

512

729

4

16

81

256

625

1296

2401

4096

6561

5

32

243

1024

3125

7776

16807

32768

59049

6

64

729

4096

15625

46656

7

128

2181

8

256

6561












-

-

+

/2-

/2+

3/2 - 

3/2+

sin

-sin

sin

-sin

cos

cos

-cos

-cos

cos

cos

-cos

-cos

sin

-sin

-sin

sin

tg

-tg

-tg

tg

ctg

-ctg

ctg

-ctg

ctg

-ctg

-ctg

ctg

tg

-tg

tg

-tg









Файл придуман и сделан Денисом Павлюком (C). Коммерческое распространение не приветствуется без моего согласия и запрещается. Все предыдущие ошибки исправлены. Успешно тестировано в МАИ.  Mizz@ru..ru , mizz@windoms.sitek.net, Denis_Pavluik@p944.f975.n5020.z2.fidonet.org , 2:5020/975.944@Fidonet

© Рефератбанк, 2002 - 2017