Определенный интеграл
ИНТЕГРАЛ (от лат. Integer - целый) - одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой - измерять площади, объемы, длины дуг, работу сил за определенный промежуток времени и т. п.
СВЕДЕНИЯ ИЗ ИСТОРИИ О ПРОИСХОЖДЕНИИ ТЕРМИНОВ И ОБОЗНАЧЕНИЙ
Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова сумма). Само слово интеграл придумал Я. Бернулли (1690 г.). Вероятно, оно происходит от латинского integero, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования “восстанавливает” функцию, дифференцированием которой получена подынтегральная функция.) Возможно происхождение слова интеграл иное: слово integer означает целый.
В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же , в 1696г., появилось и название новой ветви математики - интегральное исчисление (calculus integralis), которое ввел И. Бернулли.
Другие известные вам термины, относящиеся к интегральному исчислению, появились значительно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее “примитивная функция”, которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как “начальный”: F(x)= - начальная (или первоначальная, или первообразная) для функции f(x), которая получается из F(x) дифференцированием.
В современной литературе множество всех первообразных для функции f(x) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. А называют определенным интегралом (обозначение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эйлер).
Самое важное из истории интегрального исчисления
Возникновение задач интегрального исчисления связано с нахождением площадей и объемов. Ряд задач такого рода был решен математиками древней Греции. Античная математика предвосхитила идеи интегрального исчисления в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывающий метод, созданный Евдоксом Книдским (ок. 408 - ок. 355 до н. э.) и широко применявшийся Архимедом (ок. 287 - 212 до н. э.).
Однако Архимед не выделил общего содержания интеграционных приемов и понятий об интеграле, а тем более не создал алгоритма интегрального исчисления. Ученые Среднего и Ближнего Востока в IX - XV веках изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в интегральном исчислении они не получили.
Деятельность европейских ученых в это время была еще более скромной. Лишь в XVI и XVII веках развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождение квадратур (задачи на вычисление площадей фигур), кубатур (задачи на вычисление объемов тел) и определение центров тяжести .
Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов развития интегрального исчисления. Архимед предвосхитил многие идеи интегрального исчисления. Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.
Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции. Например, криволинейную трапецию они представляли себе составленной из вертикальных отрезков длиной f(x) , которым тем не менее приписывали площадь, равную бесконечно малой величине f(x)dx. В соответствии с таким пониманием искомая площадь считалась равной сумме S = бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые сложенные в бесконечном числе, дают вполне определенную положительную сумму.
На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571 - 1630 гг.) в своих сочинениях “Новая астрономия” (1609 г.) и “Стереометрия винных бочек” (1615 г.) правильно вычислил ряд площадей (например площадь фигуры, ограниченной эллипсом) и объемов (тело резалось на бесконечно тонкие пластинки).
Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598 - 1647 годы) и Э. Торричелли (1608 -1647 годы).
В XVII веке были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П. Ферма уже в 1629 году решил задачу квадратуры любой кривой y =, где N - целое (т. е. вывел формулу ), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет, фактически опирался на идею приближенного интегрирования. И. Барроу (1603-1677 года), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функции в виде степенных рядов.
Однако при всей значимости результатов, полученных математиками XVII столетия, исчисления еще не было. Необходимо было выделить общие идеи, лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно точный алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известный вам под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.
Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М. В. Остроградский (1801 - 1862 гг.), В. Я. Буняковский (1804 - 1889 гг.), П. Л. Чебышев (1821 - 1894 гг.). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.
Строгое изложение теории интеграла появилось только в прошлом веке, Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б. Римана (1826 - 1866 гг.), французского математика Г. Дарбу (1842 - 1917).
Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1826 - 1922 гг.) теории меры.
Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875 - 1941 гг.) и А. Данжуа (1884 - 1974) советским математиком А. Я. Хичиным (1894 -1959 гг.)
Список использованной литературы
1). Афанасенко Е. И. Детская энциклопедия т.2., М., “Просвещение”, 1964.
2). Вавилов В. В. Задачи по математике. Начало анализа., М., “Наука”, 1990.
3).Евграфов Н. Н. Курс физики для подготовительных отделений вузов., М., “Высшая школа”, 1984.
4). Колмогоров А. Н. Алгебра и начала анализа., М., “Просвещение”, 1990.
5). Пинсий А. А. Физика., М., “Просвещение”, 1994.
6). Прохоров А. М. Большая Советская энциклопедия т.10., М., “Советская энциклопедия”, 1972.
7). Сканави М. И. Сборник задач по математике для поступающих во втузы., М., “Высшая школа”, 1988.
8). Яковлев Т. Х. Пособие по математике для поступающих в вузы., М., “Наука”, 1988.