Вход

Интеграл по комплексной переменной

Реферат по математике
Дата добавления: 23 января 2002
Язык реферата: Русский
Word, rtf, 3.4 Мб (архив zip, 186 кб)
Реферат можно скачать бесплатно
Скачать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу




Интеграл по комплексной переменной.

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной ?, используя параметрическое задание кривой С зададим ??t??и?? (t), где ??и???являются кусочно-гладкими кривыми от действительной переменной t. Пусть ?<= t<=???причем ??и ??могут быть бесконечными числами .?

?Пусть?? и ??удовлетворяют условию : [?‘(t)]2 + [?‘(t)]2 ? 0. Очевидно, что задание координат ? =??t??и???? (t), равносильно заданию комплексной функции ? (t)= ??(t) ??i?(t).

Пусть в каждой точке ? (t) кривой С определена некоторая функция f (? ). Разобьем кривую С на n – частичных дуг точками деления ?0 , ?1 , ?2 , …, ??n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.

?? i =? i – ? i-1. Составим интегрируемую функцию S = ?f (?*)?? i . (1)
где ?*– производная точки этой дуги.

Если при стремлении max |?? i |? 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек ? i , то этот предел называется интегралом от функции f (? ) по кривой С.

(2)

f (?i* ) = u (Pi*) + iv (Pi*) (3)

где ?? i = ???(t) ??i??(t) (??(t) и??(t) - действительные числа)

Подставив (3) в (1) получим :


(4)


Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при ?? и ?? ??0 и предполагая, что данные пределы существуют, получаем :


(5)


Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (? ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :








О ограниченности интеграла.

При этом z = ? (? ).


7.) Пусть Cp – окружность радиуса ?, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : ? = Z0 + ??ei?, 0 ? ? ? 2?, d? = i??ei? d? .

Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.


ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :

Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:


( 8 )


ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Т.к. f(? ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:

Аналогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :


ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(?) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.


TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

Пусть f (?) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (?) непрерывна в замкнутой области G, тогда :


, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.




Неопределенный интеграл.

Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф? (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)



Это аналог формулы Ньютона-Лейбница.


Интеграл Коши. Вывод формулы Коши.

Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию ? (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур ? с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и ?. Согласно теореме Коши имеем :


По свойствам интегралов :



(2 )

Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве ? окружность ?? с радиусом ? . Тогда:



(3)


Уравнение окружности ?? : ? = Z0 + ?ei????????? (4)

Подставив (4) в (3) получим :




( 5 )



( 6 )




(7)



Устремим ??? 0, т.е. ?? 0.