Вход

Динамическое представление данных

Реферат по программированию
Дата добавления: 08 декабря 2002
Язык реферата: Русский
Word, rtf, 620 кб (архив zip, 46 кб)
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу





Р Е Ф Е Р А Т



на тему :


“ Динамическое представление сигналов “













Слушателя 727 группы Зазимко С.А.








Динамическое представление сигналов.




Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”.

ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.



Данный способ получения моделей сигналов заключается в следующем. Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса.

Широкое применение нашли два способа динамического представления.

Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени  (рис. 1.1). Высота каждой ступеньки равна приращению сигнала на интервале времени .

При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее (рис. 1.2).




рис 1.1 рис 1.2



Рассмотрим свойства элементарного сигнала, используемого для динамического представления по первому способу.

ФУНКЦИЯ ВКЛЮЧЕНИЯ .



Допустим имеется сигнал, математическая модель которого выражается системой :

 0, t < -,

u(t)  0.5(t/+1), -  t  , (1)

 1, t > .

Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние. Переход совершается по линейному закону за время 2. Если параметр  устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Эта математическая модель предельного сигнала получила название функции включения или функции Хевисайда :



  t < 

t t   (2)

 t  



В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :



  t < t0

t - t0 t  t0 (3)

 t  t0






ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО

СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.



Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {,2,3,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если S0=S(0) - начальное значение, то текущее значение сигнала при любом t приближенно равно сумме ступенчатых функций :



s(t)s0(t)+(s1-s0)(t-)+...=s0(t)+(sk-sk-1)(tk).

k=1


  • Если теперь шаг  устремить к нулю. то дискретную переменную k можно заменить непрерывной переменной . При этом малые приращения значения сигнала превращаются в дифференциалы ds = (ds/d) d , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда



 ds

S(t)=s0 (t)+  (t-) d (4)

 d

0



Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие.

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.


Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :

1    

u(t;) = -----   (t + ---- ) -  (t - ---- )  (5)   2 2 



При любом выборе параметра  площадь этого импульса равна единице :



П =  u dt = 1

- 


Например, если u - напряжение, то П = 1 В*с.

Пусть теперь величина Е стремится к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при   0 носит название дельта-функции , или функции Дирака :


(t) = lim u (t;)

0


Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2) . Если Sk - значение сигнала на k - ом отсчете, то элементарный импульс с номером k представляется как :


k(t) = Sk [ (t - tk) - (t - tk - ) ] (6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :



S(t) =   (t) (7)

k= -  k


В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :


tk < t < t k+1


Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага , то


 1

S(t) =  Sk --- [ (t - tk) - (t - tk - ) ] 

k=-  


Переходя к пределу при   0 , необходимо суммирование заменить интегрированием по формальной переменной , дифференциал которой d ,будет отвечать величине  . Поскольку


1

lim [ (t - tk) - (t - tk - ) ] ---

 


получим искомую формулу динамического представления сигнала




S(t) =  s () (t - ) d

- 


Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен  - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.1






Обобщенные функции как математические модели сигналов.


В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция (t) не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции (t) может служить, например, значение интеграла




 (t) (t) dt (8)

- 

при известной функции (t) , которую называют пробной функцией.

Каждой функции (t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций (t). Непосредственно видно, что данный функционал линеен, то есть


(, 2) = a(,) + (,2).


Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций (t) задана обобщенная функция (t) 2. Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции , даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.






И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.

1 Отсюда вытекает структурная схема систем, осуществляющей измерение мгновенных значений аналогового сигнала S(t). Система состоит из двух звеньев : перемножителя и интегратора.


2 Обобщенные функции иногда называют также распределениями.


© Рефератбанк, 2002 - 2017