Вход

Биполярный транзистор и магнитные усилители

Контрольная работа по радиоэлектронике
Дата добавления: 11 июня 2007
Язык контрольной: Русский
Word, rtf, 87 кб (архив zip, 17 кб)
Контрольную можно скачать бесплатно
Скачать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу

Контрольная работа по предмету: «Электротехника»

на тему: Биполярный транзистор, магнитный усилитель»


Биполярный транзистор — это полупроводниковый прибор, содержащий два взаимодействующих n-p перехода, в отличие от полевого транзистора в переносе электрической энергии участвуют два типа носителей заряда (электроны и дырки).

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, разновидность транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n — электронный тип примесной проводимости, p — дырочный). Схематическое устройство транзистора показано на втором рисунке.

Принцип действия транзистора

В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим n-p-n транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк). Коэффициент ?, связывающий ток эмиттера и ток коллектора (Iк=? Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента ? 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в ??ироком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен ?=?/(1-?)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.


----------------------------------------------------------------------------------------------------


Магнитный Усилитель – устройство для усиления электрических колебаний НЧ; содержит катушку с магнитопроводом из ферро- или ферримагнетика. Работа магнитного усилителя основана на изменении индуктивности катушки под действием усиливаемого напряжения. Используется в измерительных приборах, устройствах автоматики и т. д.

Магнитный усилитель, усилитель электрических сигналов, основанный на использовании присущей ферромагнитным материалам нелинейной зависимости магнитной индукции В от напряжённости магнитного поля Н. Управляемыми элементами в М. у. являются индуктивности катушки с ферромагнитными сердечниками, в которых действуют 2 переменных магнитных поля; одно изменяется с частотой источника питания, другое — с частотой усиливаемого сигнала. Простейший М. у. состоит из 2 замкнутых магнитопроводов, обмотки которых W1 включены последовательно и питаются от источника переменного напряжения ~ U (рис.). Вторичные обмотки W2 включаются последовательно и навстречу друг другу, поэтому замыкание обмоток W2 на небольшое сопротивление не вызывает какого-либо изменения силы тока i1 в первичных обмотках. Если по обмоткам W2 пропустить постоянный ток, то вследствие нелинейного характера кривой намагничивания сердечников динамическая магнитная проницаемость уменьшается и соответственно уменьшается индуктивность L1 первичных обмоток, при этом ток в обмотках возрастает. Устройство, собранное по схеме на рисунке (без сопротивления нагрузки RH), называется управляемым дросселем, который становится усилителем, если последовательно с его обмотками W1 включить RH, а вместо постоянного тока в обмотку W2 подать усиливаемый сигнал постоянного или медленно (по сравнению со скоростью изменения питающего напряжения = U) изменяющегося тока i2.

М. у. принципиально отличается от лампового и транзисторного усилителей тем, что усиливаемый сигнал изменяет не внутреннего сопротивление лампы (транзистора), а индуктивность L1, включенную последовательно с нагрузкой RH, в результате чего изменяется протекающий через нагрузку ток. М. у. по существу является модулятором, в котором ток в нагрузке более высокой частоты модулируется по амплитуде усиливаемым сигналом (низкой частоты). Для получения на выходе М. у. сигнала той же формы, что и усиливаемый сигнал, устройство дополняют выпрямителем в цепи нагрузки, выполняющим роль детектора.

Коэффициент усиления по току Ki и по мощности Кр для простейших М. у. равны:



где Ry — активное сопротивление обмоток W2, Di1ср — приращение тока нагрузки, соответствующее приращению тока сигнала Di2, n1 и n2 — число витков в первичной и вторичной обмотках. По сравнению с ламповыми и полупроводниковыми усилителями М. у. имеют относительно высокую инерционность, которая объясняется главным образом отставанием во времени изменения тока i2 в управляющей обмотке от изменения напряжения, подаваемого на вход М. у. Поэтому их применяют преимущественно для усиления сигналов постоянного или медленно изменяющегося тока. Инерционность М. у. можно снизить (повысить быстродействие) введением гибкой обратной связи, увеличением числа каскадов усиления, а также включением дифференцирующего контура на входе М. у., шунтированнем нагрузки ёмкостью и др. Для расширения частотного диапазона усиливаемых колебаний в сторону более высоких частот целесообразно применять М. у. совместно с ламповыми, полупроводниковыми, электромашинными и другими типами усилителей.

Существуют сотни модификаций схем и конструкций М. у., отличающихся видом нагрузочной характеристики, способом осуществления обратной связи, числом и формой сердечников, видом усиливаемых сигналов, системой смещения, режимом работы. Выбор типа М. у. зависит от требуемых коэффициентов усиления, частоты усиливаемых колебаний, области использования. М. у. имеют самое разнообразное применение — от точных измерит, приборов до устройств автоматического управления мощными производств. агрегатами (прокатными станами, экскаваторами и т.п.). Широкое применение М. у. обусловлено преимуществами: большим сроком службы, высокой надёжностью, простотой обслуживания, значительным коэффициентом усиления, низким порогом чувствительности для сигналов постоянного тока (10-19—10-17 Вт), широким диапазоном усиливаемых мощностей — от 10-13—10-6 Вт до нескольких десятков и даже сотен кВт, постоянной готовностью к работе, возможностью суммировать на входе нескольких управляющих сигналов, значительной перегрузочной способностью, пожаро- и взрывобезопасностью, стабильностью характеристик в процессе эксплуатации.






Студент 3 курса специальности МАХП К.т.н. доцент

Байбаков Александр Алыменко Д.Н.

__________________________________ __________________

«____» декабря 2006 г. «____» декабря 2006 г.

© Рефератбанк, 2002 - 2017