МОСКОВСКАЯ
ГОСУДАРСТВЕННАЯ ГЕОЛОГОРАЗВЕДОЧНАЯ
АКАДЕМИЯ
РЕФЕРАТ:
По курсу
ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ
ТЕМА:
ТЕРМОМЕТРИЯ
Выполнил:
Студент группы РФ–00–2 Азизов М. А.
Руководитель:
Профессор Демура Г. В.
МОСКВА
2000
ВВЕДЕНИЕ
Геофизические исследования при контроле разработки месторождений существенно отличаются от геофизических работ, проводимых в бурящихся необсаженных скважинах. Обусловлено это тем , что при контроле исследуются различные категории скважин при различных режимах их работы , используются различные технологии исследований и, наконец , часто каждая обсаженная скважина , как объект измерений , требует , индивидуального подхода как к методике , так и к интерпретации полученных данных. Тогда как при исследовании необсаженных скважин и интерпретации результатов их исследования чаще всего используются типовые шаблоны, стандарты.
Сегодня, когда реальная ситуация в отрасли такова, что объемы бурения падают, значимость геофизического контроля за разработкой месторождений для снижения темпов падения добычи и ее последующей стабилизации существенно возрастает.
В контроле за разработкой выделяют три основных направления: изучение процесса выработки запасов залежей нефти, оценка эффективности применения различных методов повышения коэффициента нефтеизвлечения, диагностика состояния нефтяных пластов и скважин.
Наибольший объем исследований в производстве выполняется для решения задач, связанных с диагностикой пластов и скважин.
Задачи диагностики нефтяных пластов и скважин.
В направлении диагностики состояния нефтяных пластов и скважин выделяют три группы задач.
Определение эксплуатационных характеристик продуктивного пласта.
определение интервалов потока и поглощения жидкости ;
определение мест притока нефти , воды и газа;
определение продуктивности пласта и расхода флюида;
определение энергетических параметров пласта .
Контроль технического состояния скважины.
определение мест нарушения герметичности обсадной колонны и забоя скважины ;
выявление межпластовых заколонных перетоков в скважине;
исследование интервалов перфорации обсадных скважин.
Контроль за работой насосно-подъемного оборудования.
определение статического и динамического уровня жидкости и нефтеводораздела в межтрубном пространстве
определение местоположения и режима работы глубинных насосов
определение герметичности насосно-компрессорных труб
определение мест положения и работы мандрелей.
Геофизические методы, применяемые для диагностики скважин и пластов.
Задачи диагностики решаются при установившихся и неустановившихся режимах работы скважины. В общем случае диагностика скважин и пластов осуществляется методами термометрии, расходометрии, влагометрии, резистивиметрии, плотнометрии, барометрии и шумометрии. Опыт показывает, что наиболее информативным методом при решении задач диагностики является термометрия. Однако, термометрия (по сравнению с другими геофизическими методами) является и наиболее сложным (в методическом плане) методом.
Термометрия. Выделение работающих (отдающих и принимающих) пластов; выявление заколонных перетоков снизу и сверху ; выявление внутриколонных перетоков между пластами; определение мест негерметичности обсадной колонны, НКТ и забоя скважины; определение нефте –газо- водопритоков; выявление обводненных пластов; определение динамического уровня жидкости и нефте- водораздела в межтрубном пространстве; контроль работы и местоположения глубинного насоса; определение местоположения мандрелей и низа НКТ; оценка расхода жидкости в скважине, оценка Рпл и Рнас ;определение Тзаб и Тпл ; контроль за перфорацией колонны, контроль за гидроразрывом пласта.
Особенности термометрии при решении задач
диагностики
Основным параметром, который измеряется и несет информационную нагрузку в методе термометрии, является температура. Температура – это энергетический параметр системы , и поэтому любое изменение системы вследствие изменения режима работы скважины, уменьшения или увеличения давления , промывки, нарушения целостности колонны и т.п. приводит к изменению температуры (распределения температуры) в скважине. Система скважина-пласт в этом отношении является очень чувствительной системой, т.к. на практике используются термометры с высокой разрешающей способностью.
Диагностика осуществляется в течение всей “жизни” скважины: при заканчивании, эксплуатации и ремонте. При этом скважины подразделяют по типам (категориям) в соответствии с режимом работы, способом эксплуатации , конструкцией и т.д. С точки зрения методических особенностей решения задач скважины можно классифицировать следующим образом : простаивающие, действующие, осваиваемые.
Диагностика скважин в различные периоды “жизни” (заканчивание, эксплуатация, ремонт) имеет свои особенности. Они сводятся к тому, что решение задачи осуществляется при различных режимах работы скважин и, следовательно , при установившихся ,квазистационарных, неустановившихся и переходных температурных полях в скважинах.
Тепловое поле инерционно: для расформирования теплового возмущения в скважине требуется время, определяемое теплофизическими свойствами системы, длительностью возмущения и применяемой аппаратурой. Поэтому следующая особенность связана с тем, что (при измерениях) в различные периоды “жизни” скважины на термограммах может отражаться тепловая история скважины. Так, при освоении после бурения могут наблюдаться тепловые аномалии, связанные с бурением, цементажом, перфорацией и т.д.; в ремонте могут наблюдаться аномалии, обусловленные эксплуатацией.
Задачи необходимо решать в длительное время работающих скважинах при быстроменяющихся процессах, связанных с кратковременностью работы скважины, и в длительное время простаивающих скважинах. Поэтому, при разработке методики исследований необходимо учитывать особенность, связанную с временным фактором .
Принятая на предприятиях технология освоения связана с применением компрессора. При вызове притока флюида компрессором создаются переменные давления в скважине. Здесь можно выделить режим, связанный с репрессией, а затем , после прорыва воздуха, режим с депрессией на пласт, т.е. сочетание режимов нагнетания и отбора. Для освоения в скважину предварительно спускают НКТ, через которые можно проводить исследования. Необходимость решения задач в интервалах, перекрытых НКТ, возникает в нагнетательных скважинах ив скважинах ЭЦН.
Изменение давления в системе можно наблюдать не только при освоении, но и в длительное время работающих скважинах. Отличия могут быть в скоростях (темпах) изменения давления, что необходимо учитывать. В действующих скважинах изменение давления и системы в целом наблюдается при кратковременной их остановке, а затем при пуске. При стравливании избыточного давления (разрядке) в межтрубном пространстве перед исследованием насосных скважин происходит относительно быстрое изменение давления в системе.
Освоение характеризуется кратковременным пуском скважины. Как правило, скважина перед освоением промывается, и чаще всего, пресной или опресненной водой. В таких условиях , если из осваиваемого пласта поступает более минерализованная вода, в зумпфе скважин существуют условия для возникновения гравитационной конвекции. Кроме того, промывка, в зависимости от ее длительности, сама нарушает тепловое поле в скважине.
Ряд месторождений характеризуется высоким значением давления насыщения нефти газом. Это приводит к тому, что при эксплуатации скважины работают с забойными давлениями ниже давления насыщения. В таких условиях в скважине наблюдаются многофазные потоки (нефть, газ, вода). При освоении скважин многофазные потоки могут , очевидно, возникать и при более низких давлениях насыщения, поскольку забойное давление здесь определяется глубиной спуска НКТ и может быть еще ниже.
Различие пластовых давлений при одновременно вскрытых нескольких объектах, высокая обводненность скважин при низких дебитах- это условия, которые также необходимо учитывать при температурной диагностике, поскольку они могут отражаться на тепловом поле скважины.
Еще одна особенность, которую надо учитывать при термических исследованиях, связана с инерционностью термометра. В случае высоковязкой нефти, грязи на стенках скважины, наличии осадка в зумпфе инерционность прибора может меняться существенно, что, в свою очередь, сильно искажает температурную картину. С другой стороны инерционность определяет скорость регистрации. В любом случае она ограничена. При быстроменяющихся переходных процессах в скважине конечная скорость регистрации температуры так же может приводить к искажению регистрируемых термограмм.
Таким образом, существует многообразие факторов, влияющих на распределение температуры в скважине. Для достоверного решения задач важно знать эти факторы и особенности их проявления в конкретных ситуациях.
Основными эффектами, обуславливающими температурное поле в пласте и в скважине, являются: эффект Джоуля-Томсона, адиабатический, баротермический, смешивания и теплоты разгазирования. Решение практических задач базируется на анализе формы температурной кривой и величины температурной аномалии. Последняя (аномалия), в свою очередь, выделяется на основе сопоставления зарегистрированной термограммы с геотермической (базовой). Характер изменения формы величины и знака температурной аномалии во времени определяется так же путем сопоставления термограмм, зарегистрированных в различные моменты времени ( или при различных режимах работы скважины).
Заключение
Выбранный метод термометрии хорош тем, что для решения задач в скважинах эксплуатационного фонда проще, надежнее и достовернее метода на сегодняшний день не существует.