Вход

Расчет пройденного расстояния и времени при пассивном и активном торможении судна

Курсовая работа по транспорту
Дата добавления: 26 октября 2009
Язык курсовой: Русский
Word, rtf, 7.8 Мб
Курсовую можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу









КОНТРОЛЬНАЯ РАБОТА


Тема:

«Расчет пройденного расстояния и времени при пассивном и активном торможении судна»




Определить время падения скорости до V = 0,2 · Vo судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна). Масса судна m = 10000 т, скорость полного хода Vo = 7,5 м/с, сопротивление воды при скорости Vo Ro = 350 кН, начальная скорость Vн = 7,2 м/с


Решение


  1. Масса судна с учетом присоединенных масс воды

m1 = 1,1 · m = 1,1 · 10000 = 11000 т

  1. Инерционная характеристика судна


Sо =


  1. Продолжительность первого периода (до остановки винта)


t1 = 2,25


  1. Скорость в конце первого периода V1 = 0,6Vo, когда останавливается винт

V1 = 0,6 · Vo = 0,6 · 7,5 = 4,5 м/с

  1. Расстояние, пройденное в первом периоде, принимая =0,2


S1 = 0,5 · So · ?n = 0,5·1768·?n



6. Во время второго периода (от скорости V1 = 4,5 м/с до скорости

V = 0,2 · Vо = 0,2 · 7,5 = 1,5 м/с)



где =0,5 – коэффициент сопротивления для ВФШ

7. Расстояние, пройденное во втором периоде



8. Время свободного торможения

tв = t1 + t2 = 115 + 524 = 639 ? 640 с

9. Выбег судна

Sв = S1 + S2 = 614 + 1295 = 1909 ? 1910 м.

- в радианах


Определить время падения скорости до V = 0,2 · Vо судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна), если свободное торможение осуществляется на скорости Vн ? 0,6 · Vo m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 4,0 м/с


Решение


1. m1 = 1,1 · m = 1,1 · 10000 = 11000 т


2. Sо =


3. Определим скорость в конце первого периода, когда останавливается винт

V1 = 0,6 · Vo = 0,6 · 7,5 = 4,5 м/с

4. Т.к. Vн < V1, то винт останавливается мгновенно.

5. V = 0,2 · Vo = 0,2 · 7,5 = 1,5 м/с

  1. Время падения скорости от Vн = 4,0 м/с до V = 1,5 м/с



где ?вт = 0,5 – коэффициент сопротивления для ВФШ

Vн = V1

7. Расстояние, пройденное при падении скорости от Vн = 4,0 м/с до V = 1,5 м/с



Определить время падения скорости до V = 0,2 · Vо для судна с ВРШ и ГТЗА после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна). m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с


Решение


  1. m1 = 1,1 · m = 1,1 · 10000 = 11000 т


  1. Sо =

  2. V = 0,2 · Vo = 0,2 · 7,5 = 1,5 м/с

  3. Время падения скорости до V = 1,5 м/с



где V1 = Vн = 7,2 м/с,

?вт ? 0,7 – коэффициент сопротивления для ВРШ




Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС, если максимальный упор заднего хода Рз.х. = 320 кН. m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с


Решение


  1. Масса судна с учетом присоединенных масс

m1 = 1,1 · m = 1,1 · 10000 = 11000 т

  1. Инерционная характеристика судна


Sо =


  1. Продолжительность первого периода (до остановки винта)


t1 = 2,25


4. Скорость в конце первого периода V1 = 0,6 · Vo, когда останавливается винт

V1 = 0,6 · Vo = 0,6 · 7,5 = 4,5 м/с

5. Расстояние, пройденное в первом периоде


S1 = 0,5 · So · ?n ,


где Ре – тормозящая сила винта, работающего в режиме гидротурбины и составляющая примерно 0,2 Ro, т.е. = 0,2

S1 = 0,5 · 1768 · ?n

  1. Продолжительность второго периода


t2 = , где V1 = 4,5 м/с


Ре = 0,8 · Рз.х. = 0,8 · 320 = 256 кН


t2 =

7. Расстояние, пройденное во втором периоде


S2 = 0,5 · So · ?n т.к. к концу второго периода V = 0, то


S2 = 0,5 · So · ?n = 0,5 · 1768 · ?n

8. Время активного торможения

t? = t1 – t2 = 115 + 168 = 283 с

9. Тормозной путь

S? = S1 + S2 = 614 + 354 = 968 ? 970 м.


Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС после команды ЗПХ, если упор заднего хода Рз.х. = 320 кН и торможение осуществляется со скорости Vн ? 0,6 · Vo. Масса судна m=10000 т, скорость полного хода Vo=7,5 м/с, сопротивление воды на скорости Vo Ro=350 кН, начальная скорость Vн=4,0 м/с


Решение


  1. Масса судна с учетом присоединенных масс

m1 = 1,1 · m = 1,1 · 10000 = 11000 т

  1. Инерционная характеристика судна


Sо =


  1. Скорость в конце первого периода, когда останавливается винт

V1 = 0,6 · Vo = 0,6 · 7,5 = 4,5 м/с

  1. В случае, если Vн ? V1 = 0,6 · Vo (Vн = 4,0 м/с, V1 = 4,5 м/с), винт останавливается мгновенно и t1 = 0; S1 = 0.

  2. Тормозящая сила винта

Ре = 0,8 · Рз.х. = 0,8 · 320 = 256 кН

  1. Время активного торможения


t = ,


где V1 = Vн = 4,0 м/с

t = = 154 с

  1. Тормозной путь


S = 0,5 · So · ?n ,


где V1 = Vн = 4 м/с

S = 0,5 · 1768 · ?n


Определить время активного торможения и тормозной путь судна с ВРШ и ГТЗА, если максимальный упор заднего хода Рз.х. = 320 кН. m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с


Решение


  1. Масса судна с учетом присоединенных масс

m1 = 1,1 · m = 1,1 · 10000 = 11000 т

  1. Инерционная характеристика судна


Sо =


  1. Продолжительность активного торможения


,


т.к. к концу периода торможения V = 0, то


, где для ВРШ Ре = Рз.х. = 320 кН



  1. Т.к. к концу периода торможения V = 0, то тормозной путь судна


S = 0,5 · So · ?n , где V1 = Vн = 7,2 м/с


S = 0,5 · 1768 · ?n



Танкер водоизмещением ? = 84500 тонн, длина L = 228 м, средняя осадка dср = 13,6 м, высота борта Нб = 17,4 м, масса якоря G = 11000 кг, калибр якорной цепи dц = 82 мм, глубина места постановки на якорь Нгл = 30 м, грунт – ил, наибольшая скорость течения Vт = 4 уз., угол между направлением течения и ДП ?т = 20?, усиление ветра по прогнозу до u = 10–12 м/с, угол между ДП и направлением ветра qu = 30?. По судовым документам площадь проекции надводной части корпуса судна на мидель Аu = 570 м2, то же на ДП Вu = 1568 м2

Определить:

  • длину якорной цепи необходимую для удержания судна на якоре;

  • радиус окружности, которую будет описывать корма судна;

  • силу наибольшего натяжения якорной цепи у клюза.


Решение


1. Вес погонного метра якорной цепи в воздухе

qо = 0,021 · dц2 = 0,021 · 822 = 141,2 кг/м

2. Вес погонного метра якорной цепи в воде

qw = 0,87 · qо = 0,87 · 141,2 = 122,84 кг/м

3. Высота якорного клюза над грунтом

Нкл = Нгл + (Нб – dср) = 30 + (17,4 – 13,6) = 33,8 м

4. Удельная держащая сила якоря дана в условии задачи: К =1,3

5. Необходимая длина якорной цепи из расчета полного использования держащей силы якоря и отрезка цепи, лежащего на грунте


,


где:

а – длина части якорной цепи, лежащей на грунте; принимаем а = 50 м;

? – коэффициент трения цепи о грунт дан в условии задачи: ?=0,15

6. Определим силу ветра, действующую на надводную часть судна

RA = 0,61 · Сха · u? · (Аu · cos qu + Bu · sin qu), где

Сха – аэродинамический коэффициент задачи дан в условии Сха=1,46


qu?

Сха

сухогр. судно

пассаж. судно

танкер, балкер

0

0,75

0,78

0,69

30

1,65

1,66

1,46

60

1,35

1,54

1,19

90

1,20

1,33

1,21


RA = 0,61 · 1,46 · 122 · (570 · cos 30? + 1568 · sin 30?) =163,850 кН = 16,7 m

7. Определим силу действия течения на подводную часть судна

Rт = 58,8 · Вт · Vт2 · sin ?т, где:

Вт – проекция подводной части корпуса на ДП судна,

Вт ? 0,9 L · dcp = 0,9 · 228 · 13,6 = 2790,7 ? 2791 м2

Vт – скорость течения в м/с

Vт = 4 уз. ? 2 м/с

Rт = 58,8 · 2791 · 22 · sin 20? = 224,517 кН = 22,9 m

8. Определим силу рыскания судна при усилении ветра

Rин = 0,87 · G = 0,87 · 11000 = 9,57 m = 93,882 кН

9. Сумма действующих на судно внешних сил

? R = RА + Rт + Rин = 163,850 + 224,517 + 93,882 = 482,249 кН = 49,2 m

10. Определим минимальную длину якорной цепи, необходимую для удержания судна на якоре, при условии Fг = Fх = ? R (н) = 10 · G · К и коэффициенте динамичности Кд = 1,4


,


где:

К = 1,3 – удельная держащая сила грунта,

qw = 122,84 кг/м – вес погонного метра якорной цепи в воде

С целью обеспечения безопасности якорной стоянки надлежит вытравить

9 смычек = 225 м якорной цепи.

11. Определим горизонтальное расстояние от клюза до точки начала подъема якорной цепи с грунта



x=


214,21 м ? 214 м.


Следовательно, длина цепи, лежащая на грунте составляет

а = 225 – 214=11 м

12. Радиус окружности, которую будет описывать корма танкера

Rя = а + х + L = 11 + 214 + 228 = 453 м

13. Определим силу наибольшего натяжения якорной цепи у клюза


F2 = 9,81 · qw




Список литературы


  1. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 48 – 57.

  2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 383 – 392.

  3. Управление судном и его техническая эксплуатация. Под редакцией А.И. Щетининой 2-е издание. – М. Транспорт, 1975, стр. 393 – 401.


© Рефератбанк, 2002 - 2018