Вход

Усилительные каскады переменного тока на биполярных транзисторах

Реферат* по радиоэлектронике
Дата добавления: 01 июля 2009
Язык реферата: Русский
Word, rtf, 9.7 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше

Содержание


Содержание 1

Усилительные каскады переменного тока на биполярных транзисторах 2

Общие положения 2

Понятие о классах усиления усилительных каскадов 3

Метод расчета схем с нелинейным элементом 6

Усилитель ОЭ с фиксированным током базы 8

Стабилизация режима работы усилительных каскадов 14

Схема с фиксированным напряжением базы 17

Схемные методы стабилизации 19

Расчет параметров усилителя ОЭ по переменному току 22

Усилитель ОК (эмиттерный повторитель) 27

Усилитель ОБ 30

Усилительные каскады переменного тока на полевых транзисторах 32

Общие положения 32

Усилительный каскад по схеме с общим истоком 33

Истоковый повторитель 37



Усилительные каскады переменного тока на биполярных транзисторах


Общие положения


Характерной особенностью современных электронных усилителей является многообразие схем, по которым они могут быть спроектированы. Однако среди этого многообразия можно выделить наиболее типичные схемы, содержащие элементы и цепи, которые чаще всего встречаются в усилительных устройствах независимо от их функционального назначения.

Современные усилители выполняются преимущественно на биполярных и полевых транзисторах в дискретном или интегральном исполнении, причем усилители в микроисполнении отличаются от своих дискретных аналогов, главным образом, конструктивно-технологическими особенностями. Схемные же построения принципиальных отличий не имеют. Наибольшее распространение получили каскады на биполярных и полевых транзисторах, использующие соответственно схемы включения транзистора с общим эмиттером и общим истоком. Реже используются схемы включения с общим коллектором и общим стоком. Схемы включения с общей базой или общим затвором находят применение только в узком классе устройств, например во входных цепях радиоприемных устройств, работающих в диапазоне УКВ. Рассмотрение таких каскадов, в силу специфики построения, связанной с сильным влиянием на их свойства паразитных параметров реальной конструкции каскада, выходит за рамки настоящего курса.

В технической литературе наименование (обозначение) каскада усилителя производится в соответствии со схемой включения транзистора: усилитель ОЭ, ОК, ОБ, ОИ, ОС или ОЗ. В дальнейшем будут рассмотрены только принципы построения и основные параметры каскадов, использующих все схемы включения биполярных транзисторов и с ОИ, ОС – для полевых транзисторов.

Понятие о классах усиления усилительных каскадов


Режим работы усилителя определяется начальным положением рабочей точки (точки покоя) на сквозной динамической характеристике усилительного элемента, т.е. на зависимости выходного тока усилительного элемента от ЭДС (напряжения) входного сигнала. Вид типичной сквозной динамической характеристики показан на рисунке 4.1.


Рисунок 4.1. Сквозная характеристика усилительного каскада


В усилителях используется несколько принципиально различных режимов его работы, называемых классами усиления. Для обозначения различных классов усиления употребляют прописные латинские буквы. Различают пять основных режимов работы усилительного элемента – А, В, АВ, С и D. Рассмотрим их подробнее.

В режиме А рабочая точка (обозначена точкой РА на сквозной характеристике рисунка 4.1) выбирается на середине прямолинейного участка сквозной динамической характеристики. Возможно и иное расположение рабочей точки. Необходимо, чтобы амплитудные значения сигнала не выходили за пределы линейного участка сквозной характеристики. Выходной сигнал, в этом случае, практически повторяет форму входного сигнала при относительно небольшой величине последнего. Нелинейные искажения при этом минимальны. Ток в выходной цепи существует в течение всего периода входного сигнала. Среднее значение выходного тока велико по сравнению с амплитудой (или действующим значением) его переменной составляющей. Поэтому КПД усилительного каскада невысок – 20...30%1. В связи с этим режим усиления А используют лишь в маломощных каскадах (предварительных усилителях), для которых, как правило, важен малый коэффициент нелинейных искажений усиливаемого сигнала, а значение КПД не играет существенной роли.

В режиме В рабочая точка выбирается так, чтобы ток через усилительный элемент протекал только в течение половины периода входного сигнала. Усилительный элемент работает с так называемой отсечкой. Углом отсечки принято называть половину той части периода, в течение которого проходит ток. При работе в режиме В угол отсечки   90° (?/2). Ток покоя оказывается равным нулю, но форма выходного тока из-за нижнего изгиба сквозной характеристики искажается относительно входного даже в пределах проводящего полупериода. В кривой тока появляются высшие гармоники, что приводит к увеличению нелинейных искажений по сравнению с режимом А. Среднее значение выходного тока уменьшается, в результате чего КПД усилителя достигает 60...70%.

В режиме С рабочая точка выбирается таким образом, чтобы угол отсечки оказался  < 90°. В этом режиме обеспечивается КПД до 80...85%. Однако высокий уровень линейных искажений существенно ограничивает применение его для усиления колебаний.

Существует промежуточный режим АВ, когда рабочая точка выбирается на сквозной характеристике ниже, чем в режиме А, и выше, чем в режиме В (но все же ближе к режиму В, в начале линейного участка). Поэтому и показатели этого режима имеют промежуточное значение между режимами А и В – КПД 40...50% при невысоком уровне нелинейных искажений.

В режимах АВ, В и С выходной ток имеет прерывистый характер. Поэтому для сохранения формы выходного сигнала обычно применяют двухтактные усилители, которые обеспечивают усиление как положительной, так и отрицательной полуволны входного сигнала. Особенности схемотехнического построения подобных каскадов будут рассмотрены дальше в разделе усилителей мощности. При резонансной нагрузке (например, высокодобротный резонансный контур радиопередатчиков) могут быть использованы и однотактные схемы. Наиболее часто в этом случае применяется режим класса С.

Во всех рассмотренных ранее режимах работы максимальный входной ток, а, следовательно, и входное напряжение ограничиваются величинами, соответствующими границе между активным режимом работы и режимом насыщения. Общим для всех рассмотренных режимов работы является также тот факт, что усиление входного сигнала сопровождается потерями мощности в транзисторе усилительного каскада. Абсолютная величина этих потерь для различных классов усиления различна, но они не могут быть сведены к нулю.

Существует только две области, для которых можно считать, что мощность, выделяющаяся в транзисторе, теоретически равна нулю. Это режимы отсечки и насыщения биполярного транзистора. В этих областях потери, существующие в транзисторе, определяются исключительно его собственными параметрами и не связаны с процессом усиления входного сигнала.

Класс усиления D, соответствует режиму работы транзисторного каскада, при котором в установившемся режиме усилительный элемент (биполярный транзистор) может находиться или в состоянии включено (режим насыщения биполярного транзистора) или выключено (режим отсечки биполярного транзистора). КПД такого усилительного каскада близок к единице.

Для реализации данного режима работы входное напряжение должно принимать значение либо меньшее порогового напряжения Uбэ пор, либо большее Uвх мах, соответствующего границе активного режима работы и режима насыщения. Более подробно особенности построения усилительных каскадов, использующих режим класса D, будут рассмотрены в разделах, посвященных импульсной технике.

Следует отметить, что, строго говоря, КПД каскада, работающего в режиме класса D, только теоретически может быть равен единице. На практике в таких каскадах всегда присутствуют три составляющие потерь, природа которых кроется в неидеальности используемой элементной базы. Это потери в насыщенном состоянии, потери в режиме отсечки и потери на переключение, обусловленные движением рабочей точки на выходных характеристиках транзистора из отсечки в насыщение и обратно. Однако при правильном проектировании эти потери всегда меньше потерь в других классах усиления.

Рассмотрим построение основных схем каскадов, работающих в режиме класса А. Схемотехника усилителей других классов будет рассмотрена в разделах, посвященным усилителям мощности и импульсной техники. Начнем с анализа метода расчета схем, содержащих нелинейный элемент.


Метод расчета схем с нелинейным элементом


Известно, что путем эквивалентных преобразований любые схемы могут быть сведены к последовательному включению двух элементов. При этом характеристики элементов в общем случае могут иметь произвольный характер. Это могут быть либо два линейных элемента, либо линейный и нелинейный элементы, либо два нелинейных элемента. При этом один или оба из них могут быть управляемыми. Большая часть усилителей содержит один управляемый нелинейный элемент (транзистор) и пассивные линейные элементы – резисторы. Наличие емкостей и индуктивностей на данном этапе не учитывается. Поэтому путем преобразований схема усилителя может быть сведена к схеме, изображенной на рисунке 4.2, а.

На схеме изображен нелинейный элемент НЭ, который через резистор R подсоединен к источнику напряжения Еп. Нелинейный элемент управляется входным сигналом Uвх. Через него протекает ток Iнэ и возникает парение напряжения Uнэ. На основании закона Кирхгофа имеем:

Еп = UR + Uнэ

Расшифровывая величину UR на основе закона Ома, получаем:

Еп = Iнэ R + Uнэ. (4.1)


Рисунок 4.2. Эквивалентная схема цепи с нелинейным элементом


В системе координат Uнэ и Iнэ 2 выражение (4.1) представляет собой линию (рисунок 4.2, б):

Iнэ = –Uнэ / R + Еп / R. (4.2)

Она проходит через точки на осях координат Еп и Еп / R. Из этого следует, что при определенном токе нелинейного элемента падение напряжения на нем всегда будет соотвествокать значению, определяемому по нагрузочной прямой вне зависимости от параметров и характеристик нелинейного элемента (см. связь между IнэР и UнэР на рисунке 4.2, б). Эта линия носит наименования линии назрузки или нагрузочной прямой. Связь с характеристиками нелинейного элемента определяется зависимостью тока НЭ от входного управляющего сигнала Uвх.

При анализе режимов работы аналоговых и импульсных электронных устройств, когда на входе цепи действуют одновременно постоянная и переменная составляющие тока, пользуются методом наложения для нелинейных цепей. В этом случае сначала ведут расчет цепи с учетом только источников постоянного тока, определяя режим работы устройства на постоянном токе. Затем уже для этих характеристик (без учета постоянных составляющих тока) рассчитывают режим работы устройства на переменном токе. На практике постоянные составляющие электрического сигнала усилителя, как правило, называют напряжением и током покоя.


Усилитель ОЭ с фиксированным током базы


Напомним, что наименование «усилитель ОЭ» означает, что это усилитель, в котором используется биполярный транзистор (Э – означает эмиттер). Причем последний включен так, что эмиттер является общим (буква О в наименовании) для входной цепи и цепи нагрузки. Простейшая схема такого усилителя (усилительного каскада в многокаскадном усилителе) приведена на рисунке 4.3, а. Соединение эмиттера к входной цепи и цепи нагрузки в схеме видно явно (через общую точку, «землю»).


Рисунок 4.3. Усилитель с фиксированным током базы


Для обеспечения режима работы класса А, необходимо установить соответствующие этому режиму токи электродов. Наиболее просто это получается, если задаться расположением рабочей точки, точки покоя, примерно на середине линии нагрузки (рисунок 4.3, б). Линия нагрузки данной схемы проводится в системе координат выходной характеристики пранзистора Uкэ и Iк через точки на осях координат Еп и Еп / Rк. Рабочая точка Р характеризуется коллекторным током IкР и напряжением на коллекторе UкэР.

На основании выражения (4.1), с учетом используемых обозначений рисунка 4.3, имеем:

Еп = URк + UкэР.

Откуда, для получения выбранного распределения падений напряжений величина сопротивления

. (4.3)

На рисунке 4.3, б нанесены выходные характеристики используемого транзистора VT. Из них следует, что для того, чтобы в цепи коллектора протекал ток IкР в цепи базы должен протекать ток IбР. Для получения этого тока в цепи базы должен стоять резистор сопротивлением

, (4.4)

где UбэР – напряжение на базе, при котором через базу идет ток IбР. Это напряжение определяется по входной характеристике используемого транзистора. Однако, в связи с тем, что обычно

UбэР  Еп, (4.5)

то при определении сопротивления резистора в цепи базы пользуются более простой формулой:

.

При невыполнении неравенства (4.5) и отсутствии входных характеристик исползуемого транзистора можно ориентировочно принять следующие значения UбэР для маломощных транзисторов:

0,2 – 0,3 В – для германиевого транзистора;

0,3 – 0,5 В – для кремниевого транзистора.

Можно также ориентировочно определить рабочий ток базы не прибегая к использованию выходной характеристики транзистора:

,(4.6)

где h21Э – статический коэффициент передачи тока3, который приводится в справочных данных на транзистор. Обычно необходимо использовать среднее значение величин, приводимых в справочнике.

Номиналы используемых резисторов уточняют в соответствии с выбранным рядом по точности.

Практически расчет цепей постоянного тока закончен: если поставить в цепи базы и коллектора резисторы с найденным сопротивлением, то можно ожидать, что цепях от источнка питания потекут токи и установятся выбранное распределение напряжения. Некоторые комментарии к сказанному будут приведены в следующем параграфе.

Схема рисунка 4.3, а очень удобна для объяснения принципа работы усилителя и процесса усиления сигнала.

Представим, что в схеме использованы резисторы в соответствии с приведенным выше расчетом, что обеспечит выбранный режим работы усилителя. На рисунке 4.4. он повторен, и дополненн графиком для входной цепи базы (рисунке 4.4, а): в базу тра6нзистора поступает ток IбР при падении напряжения на ней UбэР.

Рисунок 4.4. Прохождение сигнала во входной и выходной цепях


Разделительные емкости Ср1 и Ср2 препятствуют проникновению постоянного напряжения источника питания в цепи источника сигнала Uвх и нагрузки Rн. Вместе с тем, они пропускают переменные составляющие сигнала.

Пусть реактивное сопротивление ХС1 емкости Ср1 при самой низкой частоте входного сигнала значительно меньше входного сопротивления усилителя. В этом случае практически весь входной сигнал пройдет через емкость, что приведет к изменению напряжения базы транзистора. Начнет изменяться и ток базы. Чтобы отобразить этот процесс на рисунке 4.4, а проведены две оси времени О1 и О2. До момента t1 напряжение и ток базы определяются постоянным напряжением источника питания. Поступающий переменный сигнал амплитудой Uвх приводит к изменению тока базы в пределе от iб мин до iб мак. На рисунке показан один период изменения сигнала за время от t1 до t2.

Согласно с изменением тока базы будет изменяться ток и напряжение коллектора. При этом точка, соответствующая изменяемому значению тока базы, будет перемещаться по линии нагрузки (рисунок 4.4, б) в пределах, определяемых токами базы iб мин и iб мак. Изменения тока и напряжения коллектора во времени отображены на осях О3 и О4. При отсутствии выходной характеристики используемого транзистора, измененные значения тока коллектора можно определить из выражений

iк мак = h21Э iб мак; iк мин = h21Э iб мин,(4.7)

а значения напряжения на коллекторе транзистора:

Uкэ мин = Еп – Rн iк мак; Uкэ мин = Еп – Rкэ iк мин. (4.8)

Изменение напряжения на коллекторе транзистора является источником изменения напряжения в нагрузке: переменная составляющая проходит через второй разделительный конденсатор С1Р и появляется на сопротивлении нагрузки. Если реактивное сопротивление ХС2 емкости Ср2 при самой низкой частоте входного сигнала значительно меньше эквивалентного сопротивления нагрузки Rнэ,

,(4.9)

то практически вся переменная составляющая напряжения коллектора выделится на нагрузке.

Необходимо обратить внимание на изменение фазы сигнала в нагрузке. Увеличение входного сигнала приводит к росту тока базы и, соответственно, коллектора, росту падения напряжения на Rк и уменьшению падения напряжения на транзисторе. Уменьшение входного сигнала приводит к росту напряжения на транзисторе. Таким образом, выходной сигнал оказывается сдвинутым на 1800 (на  радиан) относительно входного. Необходимо отметить, что в некоторых случаях нагрузка располагается в коллекторной цепи вместо Rк. В этом случае изменение ее напряжения совпадает с описанным выше изменением напряжения на Rк и инверсии выходного сигнала не происходит.

По полученным данным можно определить коэффициенты усиления усилителя:

.

Приведенный расчет получил наименование графоаналитического. Обычно же определение коэффициентов усиления проводят при проведении расчета усилителя по переменному току. Для этого, прежде всего, необходимо на основании принципиальной составить эквивалентную схему усилителя. Это будет выполнено несколько позднее для более сложной схемы усилителя ОЭ, эквивалентная схема которого практически не отличается от эквивалентной схемы рассмотренного усилителя.

На основе построений рисунка 4.4. сформулируем требования к предельно допустимым параметрам транзистора. Напоминаем, что предельно допустимыми параметрами называются параметры, значения которых не должны быть превышены в процессе работы прибора.

В состоянии покоя через транзистор, на коллекторе которого имеется напряжение UкР, протекает ток IкР. Поэтому на нем выделяется мощность, равная

РкР = IкР * UкР,(4.10)

которую транзистор должен быть способен рассеять в окружающее пространство. Следовательно, постоянная рассеиваемая мощность транзистора (мощность коллектора транзистора – в соответствии с наименованием, применяемым в справочной литературе) Рк должна удовлетворять неравенству:

Рк  Кзап * РкР(4.11)

где Кзап – коэффициент запаса по мощности, использование которого обеспечивает надежную работу прибора в реальных условиях. Обычно Кзап выбирается из диапазона 1,2 … 1,5, хотя могут быть и иные значения, обусловленные особенностями эксплуатации и назначения разрабатываемой аппаратуры.

Необходимо отметить, что расчет выделяемой мощности для усилителя класса А ведется по напряжению и току покоя. Их изменение в результате воздействия сигнала не учитывается, т.к при увеличении тока коллектора уменьшается падение напряжения и наоборот.д.ля усилителей, работающих в режиме иных классов, в качестве расчетной величины РкР берется средняя мощность.

Справочное значение рассеиваемой мощности Рк должно быть определено с учетом температуры окружающей среды, в которой предполагают использовать разрабатываемый усилитель.

Приходящий переменный сигнал изменяет ток и напряжение транзистора, однако, подходы к их допустимым максимальным величинам различны, в связи с отличием в механизме процессов, приводящих к разрушению транзистора. Вероятность пробоя транзистора увеличивается при увеличении скорости нарастания напряжения на коллекторе. Поэтому предельно допустимое напряжение коллектор-эмиттер должно удовлетворять неравенству:

Uкэ = Кзап * Еп. (4.12)

Коэффициент запаса по напряжению обычно выбирают из тех же предпосылок, что и коэффициент запаса по мощности.

Процесс выхода транзистора из строя в связи с прохождением через него значительного тока иной, инерционный и напоминает процесс разрушения от разогрева в результате выделения электрической мощности. Поэтому допустимый коллекторный ток определяют исходя из тока покоя (или среднего тока для иных классов режима работы):

Iк = Кзап * IкР,(4.13)

однако коэффициент запаса по току обычно выбирают несколько большим, чем в предыдущих случаях.


Стабилизация режима работы усилительных каскадов


Простота схемы с фиксированным током базы привели к тому, что она является одной из самых распространенных. Однако ей присущ ряд недостатков, устранение которых привело к созданию и использованию более сложных схем.

Как видно из приведенного выше расчета, определение величины сопротивления резистора в цепи базы произведено на основании выбранного режима работы выходной цепи транзистора и его характеристик, которые обобщенно можно выразить статическим коэффициентом передачи тока h21Э. Вместе с тем после выбора номинала резистора Rб ток базы практически не зависит от параметров транзистора (см. выражение (4.6)). Он однозначно задан (зафиксирован) сопротивлением использованного резистора Rб и напряжением источника питания. Отсюда возникло и название схемы. В то же время, ток коллектора определяется не только этим током базы, но также и параметрами транзистора. А они могут не совпадать с теми, которые были использованы при расчете. Поэтому ток коллектора практически всегда не совпадает с ожидаемым, что, в свою очередь, приводит к иному напряжению на коллекторе п сравнению с ожидаемым, т.е. к иному режиму работы каскада.

Рассмотрим пример. Пусть в усилителе по схеме рисунка 36.3, а напряжение питания Еп = 15 В и использован транзистор КТ315Б. Его статический коэффициент передачи тока, который приводится в справочнике, находится в пределе 50 – 250. Среднее значение h21Э ср = 150. Зададимся параметрами точки покоя:

IкэР = 10 мА; UкэР = 7,5 В.

Проведя расчеты по методике, изложенной в предыдущем параграфе, получаем:

Ом; ;

Ом.

В соответствии с рядом номиналов резисторов, принимаем Rк = 750 Ом, Rб = 22 кОм. Несовпадение номинала Rб по сравнению с расчетным значением приведет к некоторому увеличению тока покоя базы (IбР  682 мкА) изменению параметрами расчетной точки покоя:

IкР = 6,82 10-4 * 150 = 10,2 мА; UкэР = 15 – 750 * 10,2 10-2 = 7,35 В.

Изменения параметров рабочей точки незначительные. Однако, если при изготовлении конкретного экземпляра усилителя будет использован транзистор с предельными величинами статический коэффициент передачи тока, то режим может измениться существенно. Например, при использовании транзистора с h21Э = 50

IкР = 6,82 10-4 * 50 = 3,41 мА; UкэР = 15 – 750 * 3,41 10-3  12,4 В.

Если же h21Э = 250, то

IкР = 6,82 10-4 * 250  17 мА; UкэР = 15 – 750 * 17 10-3  2,3 В.

Как мы видим, изменения режима работы значительны.

Конечно, можно было бы уменьшить расхождения либо в результате предварительного (до проведения расчета) измерения статического коэффициента передачи тока индивидуально каждого экземпляра транзистора, либо путем подбора (регулировки) величин сопротивления резисторов. Не говоря уж об усложнении работы, это не приводит к существенному положительному результату, в связи с наличием так называемых «дестабилизирующих факторов». К ним обычно относят: изменения температуры и других параметров окружающей среды, старения элементов схемы, нестабильностью источников питания и т.п. Они приводят к изменению параметров элементов схемы, изменению токов и напряжений, т.е. к изменению режима работы каскада.

К дестабилизирующим факторам, в первую очередь, следует отнести изменение температуры окружающей среды, вызывающей, во-первых, изменение обратного тока коллекторного перехода Iко, во-вторых, изменение напряжения эмиттерного перехода Uбэ транзистора, и, в – третьих, изменение его коэффициента передачи тока h21э. Все эти воздействия приводят к изменению коллекторного тока транзистора и, следовательно, изменению выходного напряжения усилительного каскада. Поэтому важнейшей задачей при проектировании транзисторных усилителей является обеспечение именно температурной стабилизации их режима работы. При таком подходе зачастую уменьшается влияние и других воздействий.

Рассмотрим схемные построения усилителей ОЭ, которые позволяют уменьшить воздействие дестабилизирующих факторов. Необходимо напомнить, что, несмотря на указанные выше недостатки, схему с фиксированным током базы очень широко используют. Это объясняется тем, что при малых амплитудах входного и выходного сигналов, смещение рабочей точки во многих случаях не имеет принципиального значения. Поэтому прежде чем браться за более сложную схему, необходимо проанализировать возможность использования простой.


Схема с фиксированным напряжением базы


Схема с фиксированным напряжением база-эмиттер приведена на рисунке 4.5. В этой схеме режим работы транзистора задается путем подачи постоянного смещающего напряжения на базу. Напряжение смещения формируется делителем напряжения источника питания на резисторах Rб1 и Rб2. Падение напряжения на резисторе Rб2, которое одновременно является напряжением эмиттерного перехода транзистора, должно быть таким, чтобы в базу поступал ток IбР (см. рисунок 4.4, а).

Через делитель идет ток Iд. Чем он больше, тем стабильнее схема, так как изменение тока базы будет слабо влиять на величину смещения. Однако следует иметь в виду, что ток делителя нельзя выбирать слишком большим, поскольку в делителе расходуется дополнительная энергия, и чем больше ток Iд, тем большее мощности источника питания будет расходоваться в этой вспомогательной цепи. Кроме того, в этом случае уменьшаются величины сопротивлений Rб1 и Rб2, что приводит к уменьшению входного сопротивления каскада и возрастанию нагрузки на источник сигнала. Обычно ток делителя выбирают в пределах (2...10) IбР.

Рисунок 4.5. Усилитель ОЭ с фиксированным напряжением базы


Расчет сопротивлений делителя (после выбора его тока) проводится по формулам:

(4.14)

Стабильность работы схемы рисунка 4.5, а незначительно превосходит схему с фиксированным током базы, вместе с тем, имеет дополнительный резистор. Поэтому она не получила широкого распространения. Можно повысить ее стабильность, если вместо резистора Rб2 ввести диод. Известно, что при изменении температуры статический коэффициент передачи тока транзистора и падение напряжения на р-п переходе меняются в противоположных направлениях. Например, при повышении температуры h21Э возрастает, а падение напряжения на р-п переходе уменьшается. Поэтому, если изменение температур на этих элементах будет идентичным, то произойдет частичная термокомпенсация: уменьшение падения напряжения на р-п переходе при увеличении температуры приведет к уменьшению тока базы, что уменьшит влияние роста коэффициента передачи на режим работы каскада. При уменьшении температуры окружающей среды будет наблюдаться обратная картина.

Наиболее плодотворна реализация термокомпенсационной схемы в микроэлектронном исполнении, где элементы могут быть расположены на небольшом расстоянии друг от друга и произведена оптимизация их характеристик. Вариант схемы приведен на рисунке 4.5, б, где р-п переход образован эмиттерным переходом дополнительного транзистора VTд.


Схемные методы стабилизации


Простейшей и наиболее экономичной является коллекторная стабилизация, представленная на рисунке 4.6, а.

Рисунок 4.6. Усилитель ОЭ с коллекторной стабилизацией


Положение точки покоя обеспечивается током IбР, протекающим через резистор Rб. Величина Rб определяется по формуле

. (4.15)

Изменяется и выражение для определения Rк:

. (4.16)

Хотя, в связи с тем, что IкР  IбР, получаемые величины практически не отличаются от вычисленных по формуле (4.3).

Принцип действия схемы стабилизации состоит в следующем. С ростом, например, температуры, IкР начинает расти, что приводит согласно (4.1), к уменьшению UкэР. Так как сопротивление резистора Rб постоянно, то ток IбР начнет уменьшаться. Ток коллектора и ток базы транзистора связаны между собой через статический коэффициент передачи тока. Следовательно, уменьшение тока покоя базы будет препятствовать увеличению току покоя коллектора IкР, и режим работы каскада практически не изменится. При уменьшении температуры окружающей среды будет наблюдаться обратная картина.

В схеме коллекторной стабилизации рисунка 4.6, а возникает отрицательная параллельная обратная связь по переменному напряжению, которая уменьшает коэффициент усиления и входное сопротивление каскада. Для устранения этой связи Rб делят на две части, между ними и корпусом включают конденсатор Cб (рисунок 4.6, б). Емкость конденсатора должна быть такой, чтобы на самой нижней частоте усиления его сопротивление переменному току было существенно меньше входного сопротивления каскада Rвх:

,(4.17)

где fн – нижняя частота сигнала.

Схема коллекторной стабилизации эффективна лишь при большом падении напряжения на коллекторной нагрузке (порядка 0,5 Ек и выше) и изменениях температуры в пределах 20 – 30°С.

Более качественную стабилизацию режима работы транзисторного усилительного каскада обеспечивает схема эмиттерной стабилизации, представленная на рисунке 4.7.


Рисунок 4.7. Усилитель ОЭ с эмиттерной стабилизацией


Принцип действия схемы состоит в следующем. Если сделать обход по контуру резистор Rб2 – эмиттерный переход транзистора – резистор RЭ, то можно записать:

,(4.18)

где IэР – ток эмиттера в состоянии покоя (IэР  IкР).

С изменением температуры окружающей среды, например, ее ростом, возрастают токи покоя коллектора IкР и эмиттера (IэР). При этом увеличивается падение напряжения на резисторе RЭ и в соответствии с выражением (4.18) уменьшается напряжение на эмиттерном переходе. Ток базы IбР уменьшается, что ограничивает рост тока IкР.

Для устранения последовательной отрицательной обратной связи по току, которая возникает в схеме при подаче входного сигнала переменного тока, резистор RЭ шунтируется конденсатором СЭ.

Падение напряжения на резисторе RЭ выбирают в пределе

URэ = (0,05 – 0,2) Еп (4. 19)

Откуда (после выбора URэ)

. (4. 20)

Величина шунтирующей емкости эмиттерного конденсатора находят из соотношения:

,(4.21)

Сопротивление резисторов определяют по формулам, в которых учтено падение постоянного напряжения на эмиттерном резисторе:

(4.22)

Ток делителя, также как для предшествующих схем, обычно выбирают в пределах (2...10) IбР.

Схема эмиттерной стабилизации режима работы находит наиболее широкое применение, так как обеспечивает хорошую работоспособность усилительного каскада при изменении температуры на 70 – 100°С.


Расчет параметров усилителя ОЭ по переменному току


К параметрам усилителя по переменному току будем относить его коэффициенты усиления, входное и выходное сопротивление. По ним можно представить усилитель в виде «черного ящика» и судить о пригодности усилителя к использованию.

Для расчета необходимо составить эквивалентную схему каскада, в которую включают только элементы, в которых возникают токи и напряжения, обусловленные входным переменным сигналом. Эквивалентная схема строят на основе принципиальной, номиналы элементов которой определены при ее расчете по постоянному току. Продемонстрируем принцип ее составления для самой сложной из рассмотренных схем – усилителя с эмиттерной стабилизацией (рисунок 4.7).


Рисунок 4.8. Эквивалентная схема усилителя с эмиттерной стабилизацией


Источник сигнала изображен в виде идеального генератора переменного напряжения ес с внутренним выходным сопротивлением Rг. Сигнал, проходя через разделительный конденсатор Ср1, вызывает токи в цепях усилителя. Прежде всего, возникает ток в резисторе Rб2, который замкнут на землю. Появится ток и цепи резистора Rб1, который через внутреннее сопротивление источника питания Rи также замыкается на землю.

Транзистор VT представлен его Т-образной схемой замещения, содержащей дифференциальные сопротивления rб, rэ, rк и зависимый источник тока h21э * iб. В его входной цепи возникает переменный ток базы iб. Ток коллектора в основном будет обусловлен источником тока, ток эмиттера – суммой указанных токов. Коллекторный ток замыкается на землю через цепь – резистор Rк, внутреннее сопротивление источника питания Rи. Через разделительный конденсатор Ср1 сигнал, обусловленный током iк появляется в нагрузке. В цепи эмиттера токи замыкаются на землю через Сэ и Rэ.

Для средних частот рабочего диапазона эквивалентная схема усилителя может быть упрощена. Упрощения проводят на основании учета соотношений (4.9), (4.17), (4.21) и на основе того, что емкость коллекторного перехода существенно меньше остальных емкостей. Поэтому всеми разделительными емкостями и емкостью коллекторного перехода можно пренебречь. Малое сопротивление Сэ шунтирует внешний резистор Rэ, практически подсоединяя эмиттер к земле. В результате получим схему рисунка 4.9.


Рисунок 4.9. Эквивалентная схема усилителя для средних частот


Напоминаем, что коэффициенты усиления определяются, как отношение тока, напряжения и мощности сигнала нагрузки к соответствующим величинам на входе. Их можно определить исходя из приведенной схемы. Однако, наиболее часто коэффициенты вычисляют по более простым формулам. Такой подход оправдан в связи со значительным разбросом параметров используемых транзисторов и резисторов. Так, например, коэффициент усиления по току наиболее часто принимают равным статическому коэффициенту передачи тока в схеме ОЭ, т.е.

. (4.23)

В действительности он равен . Сравнивая это выражение с (4.23), можно увидеть следующие отличия. Как видно их рисунка, числитель в формуле (4.23) завышен, а знаменатель – занижен, что должно привести к более высоким оценкам величины коэффициент усиления по току при предлагаемом его определении по (4.23). Поэтому, чтобы сохранить простоту нахождения Кi, предлагается считать его равным минимальному значению h21э, которое приводится в справочной литературе на используемый транзистор:

. (4.23)

Проведем некоторые очевидные преобразования коэффициента усиления по напряжению:

,(4.24)

где Rк вх – входное сопротивление каскада;

Rн экв эквивалентное сопротивление нагрузки, определяемое параллельным соединением Rк и Rн:

. (4.25)

Входное сопротивление каскада определяется параллельным соединением резисторов делителя Rб1, Rб2 и входным сопротивлением транзистора:

,(4.26)

где Rтр вх – входное сопротивление транзистора, которое можно определить из выражения

,

где Urб и Urэ – падения напряжений на дифференциальных сопротивлениях базы и эмиттера транзистора. Их расшифровка приводит к следующему:

. (4.27)

Зачастую, это сопротивление и определяет величину входного сопротивления каскада. Учитывая большое сопротивление дифференциального резистора обратносмещенного коллекторного перехода, для входного сопротивления каскада имеем:

. (4.28)

4.8. Характеристики усилителя ОЭ в области низших и высших частот

Эквивалентная схема каскада для низших частот представлена на рисунке 4.10, а.


Рисунок 4.10. Эквивалентная схема усилителя ОЭ для низших (а) и высших (б) частот


По сравнению с исходной схемой рисунка 4.8. на ней исключены сопротивления источников питания и емкость коллекторного перехода в связи с незначительностью их влияния при низких частотах переменного сигнала. На передачу сигнала существенное влияние оказывают емкости Ср1, Ср2 и Сэ, реактивное сопротивление которых увеличивается. При этом разделительные емкости Ср1 и Ср2 препятствуют прохождению сигнала с входа каскада на его выход, уменьшая тем самым коэффициент усиления каскада в области низших частот.д.ействие блокирующей емкости несколько иное – в области низших частот она перестает шунтировать резистор, Rэ и коэффициент усиления каскада уменьшается за счет действия отрицательной обратной связи. Как было указано ранее, для количественной оценки уменьшения усиления используют коэффициент частотных искажений, который для рассматриваемой схемы с достаточной точностью можно определить по формуле:

,(4.29)

где ,(4.29)

Если задан общий коэффициент частотных искажений Мн на весь каскад, то эту величину следует распределить между элементами, уменьшающими передачу сигнала в области низших частот и затем определить необходимые значения емкостей. Например, переходную емкость Ср1 можно вычислить по формуле

где Мр1 – доля частотных искажений, приходящаяся на данную емкость, причем

Эквивалентная схема каскада в области высших частот показаны на рис.4.10, б. С повышением частоты уменьшается коэффициент h21э и увеличиваются шунтирующее действие емкости коллекторного перехода Ск, Все это приводит к уменьшению усиления в области высших частот. Количественно уменьшение коэффициента усиления по сравнению со средними частотами оценивают с помощью коэффициента частотных искажений модуль коэффициента усиления в области высших частот.

Коэффициент частотных искажений в области высших частот на частоте fВ для каскада ОЭ можно оценить по формуле:

МВ = ??1 + (2  fВ • (Rк + Rн) • Ск • (h21э + 1)) 2, (4.30)

где Ск – справочное значение емкости коллекторного перехода для схемы ОЭ.


Усилитель ОК (эмиттерный повторитель)


Схема усилителя ОК изображена на рисунке 4.11.


Рисунок 4.11. Усилитель ОК


Расчет элементов схемы по постоянному току практически не отличается от подобного расчета элементов усилителей ОЭ. После выбора рабочей точки (рисунок 4.11, б), определяющей режим работы каскада, а также тока делителя в цепи базы (соотношение (4.16)) находят сопротивления резисторов:

(4.31)

В отличие от усилителя по схеме ОЭ схема с общим коллектором не инвертирует входной сигнал. Действительно, если на вход эмиттерного повторителя подать увеличивающееся напряжение, то это приведет к увеличению эмиттерного тока транзистора и соответствующему увеличению его выходного напряжения. Поэтому входной и выходной сигналы в схеме будут изменяться в фазе.

Переменное напряжение, снимаемое с Rнэ, через разделительный конденсатор Ср2 проникает в нагрузку. Эквивалентная схема каскада по переменному току представлена на рисунке 4.12.


Рисунок 4.12. Эквивалентная схема усилителя ОК


На схеме штриховой линией изображено выходное сопротивление источника питания Rи. Как было указано ранее, оно незначительно и им пренебрегают. Поэтому коллектор транзистора оказывается заземленным, т.е. он является общим для входной и выходной цепи. Что и объясняет наименование усилителя (усилитель ОК), хотя из рисунка 4.11, а этого явно не видно.

По сравнению с предыдущими схемами делитель в цепи базы представлен своим эквивалентным сопротивлением Rд, которое вычисляется выражением:

.,(4.32)

Определим входное сопротивление транзистора подобно тому, как это было сделано в разделе 4.7:

,(4.33)

где Rн экв – эквивалентное сопротивление нагрузки:

. (4.34)

Выражение (4.33) говорит о том, что в эмиттерном повторителе можно получить очень большие значения входного сопротивления. Это является одним из основных достоинств каскада ОК.

Окончательное выражение (4.33) было получено на основе учета того, что

.

Считая, как и для предыдущих схем, что весь ток выходного электрода (эмиттера) идет в нагрузку, получаем выражение для определения коэффициента усиления по току:

. (4.35)

Проведем некоторые очевидные преобразования коэффициента усиления по напряжению:

. (4.36)

Следовательно, напряжение сигнала на выходе при подключении нагрузки в цепь эмиттера не увеличивается – оно практически равно входному (в упрощениях при выводе соотношения (4.36) не было учтено входное сопротивление делителя Rд). Этим объясняется наименование усилителя – эмиттерный повторитель.

Аналогично усилителю ОЭ спад усиления на низших частотах эмиттерного повторителя определяется действием Ср1 и Ср2, а на высших – параметрами транзистора. При выборе разделительных емкостей пользуют соотношения, аналогичные приведенным ранее.

Выходное сопротивление каскада

.

Из сказанного следует, что каскад эмиттерного повторителя наиболее удобен для согласования высокоомных источников сигнала с низкоомной нагрузкой (Rвх – велико, Rвых – мало, Ki – велико).

Малое выходное сопротивление каскада делает его идеальным при согласовании усилителя с емкостной нагрузкой.


Усилитель ОБ


Принципиальная и эквивалентная схема по переменному току усилителя ОБ изображены на рисунке 4.14.


Рисунок 4.14. Усилитель ОБ


Расчет сопротивлений резисторов (после выбора режима работы каскада) производится по формулам (4. 20) и (4.21). Если выполнить соотношение

,(4.37)

то получим эквивалентную схему для средних частот (рисунок 4.14).


Рисунок 4.14. Эквивалентная схема усилителя ОБ для средних частот.


Применив упрощения, которые были использованы при расчетах предшествующих схем, получим:

,

. (4.38)

Входное сопротивление каскада определяется выражением (4.26). Входящее в него входное сопротивление транзистора

. (4.39)

значительно меньше сопротивления резисторов делителя в цепи базы (rэ Rб1 и rэ Rб2).

Эквивалентное сопротивление нагрузки Rн экв определяется параллельным соединением Rк и Rн (см. выражение (4.25)). Поэтому, если rэ Rк и rэ Rк вх, то усилитель ОБ будет обладать очень большим коэффициентом усиления по напряжению:

,(4.40)

Учитывая большое сопротивление дифференциального резистора обратносмещенного коллекторного перехода для входного сопротивления каскада имеем:

. (4.41)



Усилительные каскады переменного тока на полевых транзисторах


Общие положения


В построении и методах расчета усилителей на основе полевых транзисторов очень много общего с построением и расчетом усилителей на биполярных транзисторах. Также имеются три основных схемы, получивших названия в соответствии с электродом, который является общим для входной и выходной цепи: ОИ, ОС и ОЗ. Правда, последняя, с общим затвором практически не применяется, т.к при этом не удается использовать один из важнейших параметров полевых транзисторов – их большое входное сопротивление.

На усилительном каскаде с полевым транзистором можно обеспечить работу в любом из описанных ранее классов усиления. Аналогично, за исключением выходных каскадов в основном используется режим класса А, который мы и будем рассматривать.

Усилительные каскады на полевом транзисторе, прежде всего, применяют во входных каскадах усилителей. Объясняется это следующими преимуществами полевого транзистора перед биполярным:

большее входное сопротивление, что упрощает его согласование с высокоомным источником сигнала;

как правило, меньший коэффициент шума, что делает его более предпочтительным при усилении слабых сигналов;

большая собственная температурная стабильность режимов покоя.

Вместе с тем, каскады на полевых транзисторах обычно характеризуются меньшим коэффициентом усиления по напряжению, что и ограничивает их применение при построении промежуточных каскадов.

Также как и в предыдущем разделе, расчет каскады на полевых транзисторах для выбранной схемы проводит в три этапа:

определяют режим работы усилителя;

проводят расчет элементов принципиальной схемы по постоянному току;

определяют параметры усилителя по переменному току на основе эквивалентной схемы.

В последующем, чтобы обеспечить простоту и однозначность анализа будем рассматривать транзисторы с каналом п-типа, а заземленным в источнике питания будем считать его отрицательный полюс, относительно которого и будем определять все напряжения. При этих условиях напряжение на стоке должно быть положительным по сравнению с напряжением на истоке. (При р канале наоборот: заземляется положительный полюс и напряжение на стоке меньше, чем на истоке)

Схемотехнические решения, применяемые при построении каскадов на полевых транзисторах, во многом схожи с решениями, используемыми при построении каскадов на биполярных транзисторах. Имеется ряд особенностей полевых транзисторов, обусловленных, прежде всего, различиями входных характеристик трех типов полевых транзисторов и, кроме того, практически отсутствием тока затвора, на который обычно подается входной сигнал.


Усилительный каскад по схеме с общим истоком


Отличия входных (стокозатворных) характеристик разных типов полевых транзисторов, приводит к разным схемотехническим построениям усилительных каскадов на ПТ разных типов, касающихся, прежде всего, схем задания режима работы. В схемах на полевых транзисторах с управляющим р-п переходом напряжение на их затворе должно быть отрицательным по сравнению с напряжением на истоке. В этом случае обеспечивается закрытое (запертое) состояние перехода. На полевых транзисторах с изолированным затвором и встроенным каналом напряжение затвора может быть любым – как отрицательным, так и положительным по отношению к истоку. На полевых транзисторах с изолированным затвором и индуцированным каналом напряжение затвора может быть только положительным по отношению к истоку. Отсутствие входных токов на затвор позволяет обеспечить необходимое распределение напряжений только за счет внешних резисторов и схем их соединений.

На рисунке 5.1 приведены три типовые схемы усилителя ОИ, обеспечивающих получение выбранного режима работы на полевых транзисторах разных типов. Чертеж первой схемы является наиболее полным – на ней показаны разделительные конденсаторы, отделяющие по постоянному току каскад от источника сигнала и нагрузки. На последующих разделительные конденсаторы не приведены – вход и выход переменного сигнала показаны стрелками.


Рисунок 5.1. Усилительные каскады ОИ на полевых транзисторах


Наиболее общей является схема рисунка 5.1, б. Ее называют схемой с истоковой стабилизацией. Она подобна схеме рисунка 4.7, где изображен каскад с эмиттерной стабилизацией на биполярном транзисторе. Истоковая стабилизация может быть выполнена независимо от типа примененного полевого транзистора. Для того чтобы избежать уменьшения коэффициента усиления резистор Rи шунтируют конденсатором Си. Величина шунтирующей емкости эмиттерного конденсатора находят из соотношения, аналогичного (4.21):

,(5.1)

Режим работы каскада на полевых транзисторах определяется постоянным напряжением между затвором и истоком. Для схемы с истоковой стабилизацией имеем:

,(5.2)

где Iд, Iи – токи резистивного делителя и истока транзистора.

В схеме рисунка 5.1, а отсутствует делитель напряжения источника питания (Iд, = 0), поэтому она может быть использована для задания рабочей точки в транзисторах, работа которых возможна при отрицательных напряжениях на затворе. Такое включение называется схемой автоматической подачи смещения. Ее применение наиболее оптимально в каскадах на полевом транзисторе с управляющим р-п переходом.

Вторая схема позволяет получить на затворе как отрицательные (URu » URд2), так и положительные (UR д2 » URu) напряжения. В третьей схеме Rи = 0, соответственно, напряжение на затворе может быть только положительным. Поэтому ее применяют только для МОП (МДП) транзисторов с индуцированным каналом.

Необходимо отметить, что все схемы позволяет обеспечить режим термокомпенсации (см. раздел 2.6). Для этого необходимо подать на затвор напряжение, соответствующее термокомпенсационной точке стокозатворной характеристики (см. рисунок 2.13). К сожалению, такой выбор рабочей точки не всегда возможен т.к зачастую необходимо работа при больших токах стока, чем ток соответствующий термокомпенсации.

Выбор типа полевого транзистора производится на основе тех же требований к его предельно допустимым параметрам, которые были сформулированы в предыдущей главе (выражения (4.10) – (4.13)) применительно к биполярному транзистору.

Для определения основных параметров каскада по переменному току обратимся к его схеме замещения, приведенной на рисунке 5.2, а. Данная схема справедлива для области средних частот. При ее формировании использованы все допущения, что и при составлении схемы усилителя ОЭ рисунка 5.9. Например, учтено соотношение (5.1). Опущены все емкости, которые характеризуют ПТ (см. эквивалентную схему ПТ рисунка 2.13).


Рисунок 5.2. Эквивалентная схема усилителя ОИ для средних частот


Входное сопротивление в основном определяется сопротивлением резисторов, подсоединенных к затвору. Для схемы рисунка 5.1, а Rвх = Rз, для двух остальных

. (5.3)

Определим коэффициент усиления каскада по переменному току. Из эквивалентной схемы рисунка 5.2, с учетом того, что Uзи = Uвх, находим

, (5.4)

,

(5.5)

где Кu и Кi – коэффициенты усиления по напряжению и току,

S – крутизна стокозатворной характеристики полевого транзистора;

Rвых – выходное сопротивление усилителя;

(5.6)

Как и для усилителя на биполярном транзисторе, для количественной оценки уменьшения усиления используют коэффициент частотных искажений, который на нижних частотах с достаточной точностью можно определить по формуле (4.29). Эквивалентная постоянная времени

;

.

Также как и для усилителя на биполярном транзисторе, если задан общий коэффициент частотных искажений Мн на весь каскад, то эту величину следует распределить между отдельными искажающими в области низших частот цепями и затем определить необходимые значения емкостей.

Коэффициент частотных искажений в области высших частот на частоте fВ для каскада ОИ можно оценить по формуле:

МВ = ??1 + (2  fВ ?в) 2,(5.7)

где

;

Сз и, Сз с, Сс и – справочное значение межэлектродных емкостей транзистора.


Истоковый повторитель


Типовая схемы истокового повторителя приведена на рисунке 5.3, а.


Рисунок 5.3. Истоковый повторитель


Выбор типа транзистора и сопротивления резисторов определяется необходимостью обеспечить требуемый режим работы усилительного каскада. Они выполняются по методикам, изложенным применительно к усилительным каскадам других типов.

Рассмотрим основные параметры каскада по переменному току. В результате обхода по контуру, показанному на рисунке 5.3, а, для переменного сигнала можем записать:

.

При выходе последнего выражения пренебрегли падением напряжения части сигнала на разделительной емкости С1р. Из него получаем:

.

Для выходного напряжения сигнала

.

Откуда

(5.8)

Если выполняется условие S Rн экв >> 1, то схема работает как повторитель (истоковый) напряжения входного сигнала. Коэффициент усиления будет тем ближе к единице, чем больше крутизна полевого транзистора и больше сопротивление эквивалентной нагрузки. Величина последней определяется выражением:

. (5.9)

Коэффициент усиления по току и выходное сопротивление:

(5.10)

Входное сопротивление в основном определяется сопротивлением резисторов, подсоединенных к затвору. Для схемы рисунка 5.3, а Rвх = Rз, в случае использования делителя – см. (выражение (5.3)).

1 Более полное рассмотрение энергетических показателей работы усилителя в разных классах приведено в разделе 9

2 Выбор системы координат (Uнэ и Iнэ) определяется тем, что для управляемых электронных приборов (например, транзисторов) они соответсвуют их выходным характеристикам, а для неуправляемых – вольт-амперным.

3 В разделе 2.2 показано, что для низких частот h21Э =  (см. выражение (2.18)), что позволяет использовать любое из этих обозначений.

© Рефератбанк, 2002 - 2025