МОУ «Средняя общеобразовательная школа №6»
г. Кирова Калужской области.
Выполнила:
ученица 11 «А» класса
Кульбянок А.
Учитель:
Кочергина В.Э.
г. Киров
2006г.
План:
Введение.
Солнце – Жёлтый карлик.
Наблюдение за Солнцем.
Вращение Солнца
Радиус, масса, температура
Химический состав Солнца
Строение атмосферы Солнца.
Фотосфера
Хромосфера
Корона
Внутренние строение Солнца.
Источники энергии Солнца.
Колебания Солнца.
Солнце и жизнь на Земле.
Энергия Солнечного света.
Солнечный ветер и магнитные поля.
Бомбардировка энергичными частицами.
Заключение.
Литература.
Приложение.
Введение.
Когда мы говорим о звездах, прежде всего у нас возникает ассоциация с ночным небом, усеянным россыпями огней. Гигантские расстояния до звезд, измеряемые тысячами световых лет, завораживают разум человека. Мы уже привыкли ставить рядом со словом «звезды» слово «далекие». А между тем не надо забывать, что самая настоящая звезда находится буквально в «шаге» от нас. Правда, шаг этот астрономический, и равен он все-таки 150 миллионам километров.
Речь, как нетрудно догадаться, идет о нашем Солнце. Нет, наверное, другого небесного светила, которому поэзия уделяла бы столько внимания. А в то же время с точки зрения астрофизика наше Солнце ничем не выделяется среди 1011 звезд Галактики и примерно 1020 звезд главной последовательности в доступной наблюдениям Вселенной.
Типичная звезда спектрального типа G2 имеет, пожалуй, лишь одну немаловажную особенность: в планетной системе этой звезды на третьей планете есть жизнь. И возможность существования этой жизни, и закономерность ее развития полностью зависят от Солнца. Вполне естественно, что заинтересованная сторона пытается, попять его природу и происходящие на нем явления.
Исследование Солнца обусловлено не только прикладным интересом к нему. Изучая эту звезду, мы открываем тем самым страницу в исследовании самых общих астрофизических процессов. Достаточно вспомнить проблему генерации ядерной энергии в звездах, которая была решена лишь потому, что перед астрономами и физиками стоял вопрос о причине светимости Солнца.
Но следует помнить о том, что основные успехи в исследовании Солнца были достигнуты сравнительно недавно.
1. Солнце – жёлтый карлик.
1.1. Наблюдение за солнцем.
В течение тысячелетий люди занимались главным образом наблюдениями за положением Солнца на небе, за его движением по небесному своду. Некоторые просвещенные мыслители древности полагали даже, что и Солнце и Луна каждый вечер потухают, а на следующий день их заменяют новые солнца и луны. Считалось также, что Солнце — прозрачный, как стекло, шар, получающий тепло и свет от некоего центрального огня «хестиа» и от огня, находящегося за пределами небесной сферы.
Постепенно в древности сформировалось представление о том, что наше Солнце — «око мира» — небесное тело, состоящее из чистого света и огня. Эта точка зрения была поколеблена в XVII веке, когда телескопы обнаружили пятна на Солнце. Сначала их сравнивали со шлаками, по аналогии с расплавленным металлом, но затем постепенно стали появляться идеи о темном теле Солнца, окруженном океаном огня. Здесь тоже проводилась аналогия, но уже с Землей, окруженной океаном воды. В этой аналогии пятнам отводилась роль гор, возвышающихся над огненным океаном. Однако более детальное изучение структуры пятен заставило астрономов отказаться от этой мысли. Пятна стали считать дырками в яркой оболочке, через которые можно видеть темную поверхность Солнца.
Поразительно, что великий Гершель в 1795 году предположил, будто Солнце является обителью живых существ. Огненный океан расположен над ними, а плотный слой облаков защищает жителей Солнца от жары. В качестве аргумента против того, что жар может уничтожить жизнь на Солнце, Гершель указывал на понижение температуры в горах на Земле, то есть в областях поверхности, расположенных ближе к Солнцу. Гершель писал: «...оно (Солнце.— Л. М.),- весьма вероятно, так же как и остальные планеты, населено живыми существами, органы которых приспособлены к особым условиям этого обширного небесного тела».
Замечательно, что столь наивные, на наш взгляд, представления продержались в умах людей до второй поло вины XIX века, то есть до тех пор, когда появилось учение об энергии. Это является ярким свидетельством того, насколько физика отставала в те времена от наблюдательной астрономии.
Лишь появление спектрального анализа дало возможность полностью пересмотреть представления о Солнце. Изучение фраунгоферовых линий солнечного спектра продемонстрировало поразительную вещь: эти линии совпадали с эмиссионными линиями многих элементов, присутствующих на Земле. Кирхгоф, измеривший положение фраунгоферовых линий поглощения в спектре Солнца, сделал абсолютно верное предположение о том, что химические элементы, встречающиеся на Земле, есть и в атмосфере Солнца. Таким образом, спектральный анализ предоставил казавшуюся еще недавно совершенно невероятной возможность установить химический состав далеких небесных тел. Как не вспомнить здесь еще раз высказывание О. Конта, который говорил о полной невозможности узнать химический состав и температуру звезд.
Естественно, что новые открытия не могли не повлиять на представления об облике Солнца. Очень интересно, как «видел» Солнце сам Кирхгоф. Он считал, что это раскаленный шар очень высокой температуры, окруженный более холодной атмосферой, в которой земные элементы присутствуют в газообразном состоянии. Солнечные пятна, по Кирхгофу, облака в этой атмосфере.
Кирхгоф совершенно правильно говорил о том, что темный цвет пятен свидетельствует об их более низкой температуре. Не все ученые разделяли точку зрения Кирхгофа. Некоторые считали, что на месте солнечных пятен происходит истечение нагретого газа, который разрывает облачный покров. Кстати говоря, к этому времени накопился огромный наблюдательный материал о солнечных пятнах. Основной вклад в этот материал был сделан, как мы уже говорили, аптекарем из Дессау Швабе. Сначала цель его наблюдений была совершенно иной: он хотел найти малую планету внутри орбиты Меркурия. И хотя никакой новой планеты открыть ему не удалось, имя его навсегда осталось в истории астрономии, поскольку именно он открыл, что количество пятен на Солнце меняется периодически. Как это случилось?
Сравнивая данные своих наблюдений за многие годы, Швабе обнаружил, что в 1828 и 1829 годах не было ни одного дня, когда Солнце было бы абсолютно чистым. И, наоборот, в 1833 и 1843 годах в течение половины всех дней наблюдений на Солнце вообще не было пятен. За 1828 год Швабе наблюдал 225 пятен, а в 1833 году лишь 33. За 1837 год Швабе насчитал 333 пятна, а за 1843-й — только 34.
Швабе сделал заключение о том, что максимумы и минимумы повторялись примерно через 10 лет. Результат был проверен по историческим материалам, и вывод Швабе подтвердился. Свои результаты он опубликовал в 1851 году, и в этом же году появилось сообщение о том, что вариации магнитного поля Земли также имеют период в 10 лет, то же самое оказалось справедливым и для полярных сияний. Таким образом, связь процессов, происходящих на Солнце и на Земле, была установлена еще в прошлом столетии.
В эти же годы изучение положения пятен па Солнце и вращения самого Солнца позволило открыть очень интересное явление. Оказалось, что пятно, находящееся у экватора, двигается быстрее, чем пятно, находящееся на широте 45°. Если первое совершало оборот за 25 дней, то второе только за 27,5 дня. Именно таким образом был установлен и период вращения Солнца, и тот факт, что Солнце вращается дифференциально. К тому же это означало, что пятна никак не могут быть районами твердого тела Солнца.
Пятна на Солнце огромны. Некоторые из них превышают размеры земного шара. Они теснятся к экватору, избегая высоких широт Солнца. Пятна нередко располагаются симметрично относительно солнечного экватора. Кроме того, их положение зависит от солнечной активности. Если построить диаграмму зависимости широты пятен от времени, то получаются фигуры, напоминающие бабочек. По имени астронома, изучавшего солнечные пятна, эти фигуры получили название бабочек Д. Маундера.
Для изучения Солнца еще в XIX веке использовали фотографию, с помощью которой удалось установить, что пятна — самые дальние от нас образования, выше пятен расположены факелы. Видимую поверхность Солнца стали называть фотосферой (сферой света).
До середины XIX века было установлено, что фотосфера представляет собой отнюдь не сплошную поверхность. Эта видимая поверхность Солнца напоминает кипящую рисовую кашу. Иными словами, она имеет ячеистую, или гранулированную структуру. Астрономы многократно фотографировали эти структуры и назвали их гранулами.
В начале XX века в Пулковской обсерватории установили, что средняя продолжительность жизни отдельных гранул составляет примерно 5 минут. Затем гранула распадается, и на се месте появляется новое образование такого же типа.
До середины XIX века усилия астрономов были сосредоточены па наблюдениях поверхности Солнца. (Мы, конечно, должны все время помнить при этом, что никакой поверхности в общепринятом смысле этого слова Солнце не имеет.)
В 1842 году произошло событие, которое существенно расширило представления человека о Солнце. Речь идет о полном солнечном затмении, наблюдавшемся па юге Франции и в Северной Италии. За ним последовали затмения 1851 и 1860 годов. Астрономы могли наблюдать лучистый венец Солнца — корону и розовые «облака» — протуберанцы.
Вообще-то говоря, протуберанцы были известны человеку очень давно, упоминания о них мы находим даже в древнерусских летописях. В XVIII веке предполагалось, что протуберанцы — облака, плавающие в атмосфере Луны. Но только в 1851 году астрономы увидели, что протуберанцы генетически связаны с тонкой розовой оболочкой, окружающей Солнце со всех сторон. Эта оболочка была названа хромосферой (сферой цвета).
Естественно, что в наблюдениях сразу же использовали спектроскопию, причем широкому использованию этого метода помогло то обстоятельство, что, оказывается, можно было не ждать солнечного затмения, а просто направить щель спектроскопа на край незатмившегося Солнца. Это дало возможность наблюдать линии протуберанцев и изучать их поведение при полном дневном свете.
И уже в конце XIX века наблюдения протуберанцев стали таким же обычным делом, как и наблюдения солнечных пятен. Заметим, что в России наблюдения за солнечными пятнами были организованы выдающимся русским астрономом Ф. Бредихиным.
Итак, протуберанцы. Они появлялись на всех широтах вплоть до полярных районов Солнца. Особенно много их было в годы максимума пятен в низких широтах. Уже тогда было известно два основных типа протуберанцев; похожие на розовые облака «спокойные» протуберанцы, свободно плавающие над хромосферой, и «эруптивные», поднимающиеся как грандиозные фонтаны огня на колоссальную высоту, где они могли или рассеиваться, или как бы всасываться обратно в пятна.
Протуберанцы могут иметь форму волокон. Бывает, что волокно «выдувается» из Солнца в гигантскую красивую арку. Протуберанец такой формы наблюдался астрономами США, и сотрудники обсерватории дали ему ласковое название «Дедушка».
Самые разнообразные и причудливые формы — главная отличительная особенность протуберанцев.
Один из пионеров в наблюдении протуберанцев, Ж. Жансен, писал: «Я составил карты протуберанцев, которые показывают, с какой скоростью (иногда за несколько минут) эти колоссальные массы газа изменяют свою форму и положение». Поскольку протуберанцы холоднее короны, долгое время считалось, что они как бы продолжение хромосферы. Теперь стало понятным, что некоторые протуберанцы действительно подобны хромосфере, зато другие обнаруживают свойства, промежуточные между хромосферой и короной.
Во время солнечного затмения 1868 года, наблюдавшегося в Индии, ученые изучали спектры протуберанцев. В спектрах были отождествлены красная и зеленая линии водорода, а также желтая линия, которую поначалу приняли за линию натрия. Однако очень скоро выяснилось, что эта линия принадлежит не натрию, а элементу, который тогда еще не был известен на Земле. Этот элемент получил название «гелий» — солнечный.
Некоторые протуберанцы тесно связаны еще с одним замечательным явлением на Солнце, открытым в 1859 году. Одним из соавторов этого открытия был астроном-любитель Кэррингтон, который, кстати говоря, обнаружил впервые дифференциальное вращение Солнца. Так вот, наблюдая пятна на Солнце, он вдруг увидел в белом цвете Солнца мгновенное увеличение яркости — вспышку, продолжавшуюся около пяти минут. Сам Кэррингтон полагал, что вспышка вызвана падением большого метеорита на Солнце.
Об этом открытии вспомнили более чем через полвека, когда в руках астрономов была уже более совершенная техника, с помощью которой обнаружили внезапные извержения на Солнце, сопровождавшиеся вспышками излучения водорода. В 1933 году заметили удивительное совпадение: по мере «затухания» вспышки на Солнце происходило затухание коротковолновой связи на Земле.
Как правило, вспышки можно наблюдать в спектральных линиях водорода или какого-нибудь другого, но достаточно распространенного элемента на Солнце. Так что Кэррингтону, который наблюдал вспышку в белом цвете, в известной мере повезло, поскольку эта вспышка была чрезвычайно яркой.
Сегодня уже хорошо известно, что солнечные вспышки всегда связаны с пятнами. Именно они порождают сильные геомагнитные бури и полярные сияния на Земле, потоки частиц высоких энергий, а также мягкие космические лучи.
Изучение спектральных линий позволило установить ряд замечательных фактов. Оказалось, например, что хромосфера имеет более высокую температуру, чем фотосфера, что солнечные пятна окружены факельными полями и что поверхность Солнца неоднородна, покрыта как бы ячеистой сеткой — гранулами.
И, наконец, в конце XIX века в районах, прилегающих к солнечным пятнам, были найдены замечательные образования, напоминающие спиральные ветви, вихри. Узоры, связывающие два пятна, были очень похожи по рисунку на расположение железных опилок вокруг полюсов магнита. Так было открыто существование сильных магнитных полей на Солнце.
Особенно интересным оказался тот факт, что спиральные структуры вихрей, окружающих два соседних пятна, имели противоположные магнитные поля. Не менее замечательным было и то, что последовательность полярностей пар пятен в северном полушарии была обратной южному. В какой-то мере это напоминало поведение земных циклонов, имеющих противоположные направления вращения к северу и югу от экватора.
В 1912 году после очередного минимума солнечных пятен оказалось, что полярность северного и южного полушарий поменялась, а во время очередного минимума в 1922 году снова произошло изменение полярности.
Так, благодаря выдумке, упорству и терпению астрономов был накоплен огромный наблюдательный материал о Солнце. Не надо думать, однако, что все имеющиеся факты сразу получили правильное объяснение. Фундамент знаний о Солнце и по сей день, имеет трещины. Достаточно вспомнить проблему солнечных нейтрино. Не меньше загадок задают и пятна на Солнце. Тем не менее, сегодня мы в целом достаточно хорошо представляем себе происходящие на Солнце процессы.
1.2. Вращение солнца.
Если сравнить несколько последовательных фотографий Солнца, то можно заметить, как меняется положение всех пятен на диске. Это происходит из-за вращения Солнца. Солнце вращается не как твердое тело. Пятна, находящиеся вблизи экватора Солнца, опережают пятна, расположенные в средних широтах. Следовательно, скорости вращения разных слоев Солнца различны. Экваториальные области делают один оборот вокруг оси Солнца за 25 земных суток, а области вблизи полюсов Солнца — примерно за 30 суток. Линейная скорость вращения на экваторе Солнца составляет 2 км/с. Наблюдения показывают, что все пятна перемещаются от восточного края к западному. Следовательно, Солнце вращается вокруг своей оси в направлении движения планет вокруг него.
1.3. Размеры, масса и светимость Солнца.
Радиус Солнца в 109 раз, а объем примерно в 1 300 000 раз больше соответственно радиуса и объема Земли. Велика и масса Солнца. Она примерно в 330 000 раз больше массы Земли и почти в 750 раз больше суммарной массы движущихся вокруг него планет.
Энергия, получаемая Землей от Солнца, характеризуется солнечной постоянной. Солнечной постоянной называется величина, определяемая полной энергией, которая падает в 1 с на площадку 1 м2, расположенную перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии Земли от Солнца.
Для измерения солнечной постоянной на высокогорных станциях определяют количество теплоты, которое получает вода, налитая в специальные сосуды, от зачерненного металлического диска, нагреваемого солнечными лучами. В результате тщательных измерений, выполненных с учетом поглощения видимого, инфракрасного и ультрафиолетового излучения в земной атмосфере, нашли, что солнечная постоянная равна 1400 Вт/м2 (более точное значение несколько меньше).
1.4 Химический состав солнца.
Даже в прошлом веке некоторые ученые считали, что мы никогда не узнаем, из чего состоит Солнце. Однако применение спектрального анализа к исследованию Солнца опровергло такое предположение. Спектр Солнца — это непрерывный спектр, пересеченный множеством узких темных линий поглощения (называемых фраунгоферовыми линиями, по имени немецкого оптика Й. Фраунгофера (1787—1826), впервые наблюдавшего и зарисовавшего их в 1814 г.). Отождествление линий в спектре Солнца с линиями в спектрах химических элементов, изучаемых в лабораторных условиях, позволяет определить состав атмосферы Солнца. На Солнце обнаружено более 70 химических элементов. Никаких «неземных* элементов Солнце не содержит. Самые распространенные элементы на Солнце — водород (около 70% всей массы Солнца) и гелий (более 28%). Гелий («солнечный газ») был впервые открыт на Солнце и только почти через 30 лет — на Земле.
2. Строение атмосферы солнца.
2.1. Фотосфера
Фотосферу удобно рассматривать как внешний, поверхностный слой Солнца, видимый в белом цвете. Этому слою можно приписать температуру 6700 К.
Слой этот по сравнению с другими довольно тонкий даже по нашим земным меркам, он простирается примерно на 500 километров, сливаясь, с одной стороны, с зоной конвекции, а с другой — с хромосферой. Поразительной особенностью фотосферы является так называемая грануляция, о которой мы уже упоминали чуть выше. Гранулы — это многоугольники на поверхности фотосферы, пересеченные узкими темными прожилками. Размеры гранул порядка тысячи километров, живут они несколько минут, сменяясь потом другими гранулами. Именно поэтому и возникло довольно удачное сравнение с кипящей рисовой кашей.
Уже чисто интуитивно напрашивается ответ на вопрос о природе подобных образований. Если каша кипит, то мы должны иметь дело с конвекцией.
И действительно, если мы начнем путешествие вместе с квантами излучения из центральных районов Солнца к его поверхности, то сначала ни кванты, ни воображаемый путешественник не будет испытывать заметных трудностей. Температуры там высоки, непрозрачность мала, и кванты без труда «просачиваются», диффундируют к поверхности.
С понижением температуры начинается рекомбинация электронов и ядер атомов в ионы, которые могут уже взаимодействовать с фотонами, в частности, поглощать их. Ясно, что непрозрачность при этом сильно возрастает.
Однако звезда должна «сбрасывать» энергию, выделяющуюся в ее недрах, если бы этого не было, она просто бы взорвалась. И вот здесь в игру вступает другой, уже известный нам механизм переноса энергии — конвекция, когда горячие элементы всплывают и отдают свое избыточное тепло окружающей среде, подогревают ее. Ну а вещество, которое опускается при конвективном перемешивании, холоднее окружающей среды, почему и кажется (при тех температурах, с которыми мы имеем дело) более темным. Поэтому можно считать, что разделяющие гранулы темные полосы — участки поверхности фотосферы.
Конвективная зона на Солнце начинается выше уровня, где значение радиуса достигает 0,85 полного радиуса Солнца. Здесь эффективность конвекции очень велика, она переносит почти весь поток солнечной энергии, хотя сама эта зона содержит всего около двух процентов массы Солнца.
Итак, грануляция фотосферы — типичное конвективное движение. Скорость этого движения около 300 метров в секунду, разница в температурах между светлыми и темными участками примерно 300 К.
В конвективной зоне происходит еще один удивительный процесс, имеющий большое значение не только для фотосферы, по и для хромосферы, и для короны Солнца. Что же это такое?
Еще раз вернемся к явлениям конвекции и грануляции. На первый взгляд может показаться, что и тот, и другой процессы должны быть совершенно хаотическими. Образование каждой ячейки, так же как и в кипящей рисовой каше, должно происходить случайно. Оказалось, однако, что это не так. В 1960 году было обнаружено, что вся поверхность в некоторых участках слоя, расположенного над верхней границей конвективной зоны, поднимается и опускается относительно некоторого среднего положения, смещаясь при этом на высоту примерно 25 километров. Причем горизонтальный размер области, которая поднимается и опускается, достигает 50 тысяч километров!
Долгое время это явление не находило объяснения. В последние годы картина все-таки прояснилась. Оказалось, что Солнце, вернее — его конвективная зона, работает как гигантский орган, генерируя акустические волны. Этот факт имеет огромное значение не только потому, что в руках астрофизиков появился новый метод изучения и фотосферы и конвективной зоны Солнца. «Пятиминутные» колебания переносят энергию в верхние слои атмосферы Солнца, определяя во многом происходящие в них процессы.
На Солнце имеются «дефекты» - пятна, пожалуй, самые легкие для наблюдения объекты из всех явлений, связанных с нашим светилом. О них очень много известно, но, тем не менее, специалисты считают, что до сих пор мы не можем понять два основных факта, прямо касающихся пятен: почему пятна темные и почему они вообще существуют. Ответ на первый вопрос может показаться очевидным, поскольку разгадку может дать любой человек, мало-мальски знакомый с физикой.
«Разумеется,— ответит он,— пятна темные, так как они холодные». Этот ответ будет абсолютно правильным, пятна холоднее окружающей фотосферы на 1500—2000 К. Но почему они холодные?
Ясно, что тем или иным образом дело здесь связано с магнитными полями. Вообще говоря, магнитные силовые линии в сравнительно слабых полях как бы «вморожены» в вещество и следуют за ним при всех его движениях. Это
понятно, так как превысоких температурах фотосферы мы имеем хорошую проводимость вещества. Но в области пятен магнитные поля в тысячи раз сильнее, чем среднее магнитное поле Солнца, и поэтому ряд исследователей считает, что сильные магнитные поля в области пятна подавляют конвективные движения, вещество как бы приклеивается к магнитным силовым линиям, и это тормозит восходящие и нисходящие потоки вещества.
Однако подобное объяснение сталкивается с целым рядом трудностей. Отнюдь не все специалисты разделяют эту точку зрения, и проблему понижения температуры фотосферы в области пятен никоим образом нельзя считать полностью решенной.
Пятна редко появляются в одиночку, обычно возникает сразу группа пятен. Иногда в области пятен можно наблюдать магнитное поле одной полярности, иногда группы пятен биполярны. Интересно, что пятна имеют небольшие собственные движения на диске Солнца.
Появлению пятен в активной области предшествует рождение факела — более яркой области фотосферы. Затем уже в районе факела можно увидеть темные поры. Разрастаясь, они сливаются друг с другом в пятно. Диаметр пятна составляет 10—15 тысяч километров, но, как мы уже говорили, бывают и более крупные пятна. Пятна, по всей видимости, вращаются быстрее, чем окружающий их газ.
Очень интересны результаты анализа поведения пятен за историческое время. Этот анализ показал, что, начиная с 1645 по 1715 год, то есть в течение 70-летнего промежутка времени, циклы солнечной активности практически исчезли. С 1672 по 1704 год в северном полушарии Солнца пятен не было видно совсем! Этот период времени был назван маундеровским минимумом.
Удивительно, что дифференциальное вращение поверхностных слоев Солнца в течение нескольких лет перед маундеровским минимумом было в три раза больше обычного. Вдобавок этот период времени (минимум) совпал с так называемым «малым ледниковым периодом» — чрезвычайно холодной погодой в северном полушарии. Внутренняя связь всех этих явлений не представляется очевидной, но ясно лишь одно — сюрпризы и загадки астрофизики находятся не только в глубинах Вселенной, но и прямо перед нашими глазами.
Явления, связанные с пятнами на Солнце, не ограничиваются одной лишь фотосферой. Так, например, «плюмажи» интенсивного излучения, имеющие форму замкнутых петель, уходят в корону. Но о короне позже.
А сейчас мы поговорим о следующем за фотосферой слое Солнца — хромосфере.
2.2. Хромосфера
Больше всего солнечная активность проявляется в хромосфере — сфере цвета, имеющей красноватый оттенок, хорошо видный в момент, непосредственно предшествующий полному покрытию Солнца Луной. Именно в хромосфере разыгрываются наиболее впечатляющие и поражающие взор человека процессы. И хотя, следуя традиции изложения, следовало бы сначала поговорить о структуре хромосферы, давайте все-таки посмотрим на самое интересное явление, на Солнце — протуберанцы. Они могут принимать разнообразнейшие формы, а поведение их нередко совершенно непредсказуемо, словно поведение капризной женщины.
Протуберанцы во многом напоминают порождения Океана в романе С. Лема «Солярис». Есть спокойные, долгоживущие протуберанцы, плавающие над Солнцем, словно облака. Эти облака имеют форму занавесок, частоколов, воронок, спокойных волокон. Такие протуберанцы способны существовать месяцами. Правда, они могут изменять свою форму после вспышек на Солнце.
Короткоживущие протуберанцы связаны с вспышками па Солнце и с пятнами. Такие протуберанцы представляют собой веерообразные выбросы, где вещество движется со скоростью до двух тысяч километров в секунду. Нередко после вспышек и выбросов возникают протуберанцы, имеющие вид красивых, сложных дуг, замкнутых петель, дождя, а протуберанцы, примыкающие к солнечным пятнам, похожим на волокна. Структура волокна изменчива, но сами протуберанцы живут довольно долго, в течение нескольких дней. Очень часто вещество вытекает из протуберанца и по изящной дуге втекает в солнечное пятно.
Ясно, что протуберанцы, как одно из проявлений активности Солнца, тесно связаны с магнитными полями. Их плотность существенно выше плотности окружающего вещества, и поэтому они в принципе не должны были бы существовать столь длительное время.
Пусть в хромосфере образовалась магнитная структура типа «примятой арки», Такие вещи могут появляться в активных областях на границе раздела полярности поля. Суть процесса в том, что на краях «арки» газ нагревается сильнее, чем в центре. Уменьшение нагрева на вершине приводит к тому, что газ охлаждается, сваливается в яму магнитного поля и там уплотняется. Это и есть зародыш протуберанца. Он непрерывно растет по мере добавления к нему все новых и новых порций газа, а магнитные линии прогибаются под его тяжестью, но, тем не менее, не дают ему возможности упасть обратно в хромосферу.
Такой механизм может за один день обеспечить появление над хромосферой довольно солидного протуберанца. Но не только структура поля типа «примятой арки» может обеспечить устойчивость протуберанца. К примеру, горизонтальные участки магнитного поля удерживают протуберанцы типа спокойных волокон.
Мы видим, что практически все проявления солнечной активности, будь то пятна, протуберанцы или вспышки, так или иначе связаны с магнитными полями на Солнце.
Феерическое зрелище протуберанцев не может оставить равнодушным того, кто хоть раз наблюдал это. Но наиболее мощным и сложным проявлением солнечной активности являются вспышки. Они характеризуются удивительным многообразием физических процессов. Здесь мы можем видеть и ядерные реакции и накопление огромного количества энергии с чрезвычайно быстрым последующим ее выделением. Достаточно сказать, что энергия вспышек в некоторых случаях эквивалентна взрыву сотен миллионов водородных бомб! Но давайте сейчас все-таки посмотрим, что представляет собой сама хромосфера — арена, на которой разыгрываются эти бурные события.
Хромосфера — область между фотосферой и короной. Но сразу же следует сказать, что выражена она несколько нечетко. Эта нечеткость проявляется особенно наглядно в верхней хромосфере, которая довольно плавно, без видимых границ переходит в солнечную корону.
Если знать неспециалисту «провокационный» вопрос, чья температура выше — фотосферы или хромосферы, наверное, ответ будет однозначен: фотосферы. Но этот ответ, хотя и построен на правильных общих предположениях, неверен. Оказывается, что над поверхностью фотосферы до высоты сто километров температура возрастает до 20 тысяч К, то есть на 1 К на каждые 5 метров! И чем выше, тем больше становится температура, на высоте 5 тысяч километров она достигает уже миллиона градусов. Однако эти высоты связаны с короной, и мы сейчас спустимся чуть пониже.
Естественно, возникает вопрос об источнике нагрева хромосферы и короны. Ведь действительно кажется, по меньшей мере, странным, что с удалением от центра Солнца, где расположены основные источники энергии, температура его внешних слоев начинает увеличиваться. Но против наблюдательных данных, как говорится, не пойдешь, и факт повышения температуры нужно было объяснять.
Объяснение оказалось далеко не тривиальным. В хромосферу и корону накачивают энергию, необходимую для нагрева... акустические волны. Именно голос Солнца, о котором уже говорилось выше, и греет верхние слои Солнца. Не правда ли, несколько неожиданный вывод? Но это именно так. А, кроме того, корона возвращает часть полученной ею энергии обратно в хромосферу, так что источники ее нагрева сегодня известны.
Одно из самых интересных и красивых явлений в хромосфере — спикулы. Они наблюдались еще патером Секки, который сравнивал их с горящей прерией. На самом деле спикулы — это струи вещества, поднимающиеся вверх со скоростями 20—30 километров в секунду до высот более 6 тысяч километров. Другими словами, спикулы уходят в область солнечной короны.
"Наблюдаемый лес спикул - постоянная особенность хромосферы. Отдельные спикулы геометрически тонки — толщина многих из них меньше 500 километров. Конечно, понятие «тонкий» совершенно различно для Солнца и Земли. Мы говорим о тонких спикулах в атмосфере Солнца, но представьте себе столб раскаленной плазмы с диаметром основания, равным расстоянию от Москвы до Ленинграда, а высотой с половину радиуса земного шара.
Некоторые ученые считают, что в каждый момент времени на Солнце имеется около полумиллиона спикул. Отдельные скопления спикул были названы «дикобразами».
Спикулы генетически связаны с более глубокими, чем фотосферные гранулы, элементами конвекции. Это так называемая супергрануляция, размеры элементов которой достигают 3 тысяч километров. Это явление было открыто сравнительно недавно.
Элементы супергрануляции живут уже не несколько минут, а сутки. Элементы супергрануляции, вернее — связанные с ними магнитные поля, воздействуют на хромосферу, инициируя в ней такие сложные структуры, как, в частности, спикулы. Система спикул, в свою очередь, образует в хромосфере, называемую хромосферной сеткой.
Поразительные явления, возникающие в хромосфере, еще таят в себе немало загадок. Но, пожалуй, самым масштабным и самым сложным из всех процессов на Солнце являются все-таки солнечные вспышки, разговор о которых мы уже начинали.
Сегодня вспышки интересуют не только астрономов-наблюдателей, но и геофизиков и космонавтов. Это и неудивительно, поскольку вряд ли какое-либо другое явление на Солнце оказывает столь сильное влияние на Землю, как солнечные вспышки.
В настоящее время десятки станций, расположенных по всей Земле, непрерывно ведут службу Солнца (патрулирование), измеряют число, положение, площадь вспышек. По интенсивности вспышки оцениваются по трехбалльной системе в зависимости от их яркости. Самая яркая вспышка и имеет балл 3.
В связи с этим я хочу рассказать забавную историю, связанную с началом патрулирования Солнца. Дело это было новое и нудное, поскольку, как говорится, нужно просто-напросто ждать у моря погоды, ждать вспышки. Администрация одной обсерватории решила вопрос с зарплатой наблюдателей просто и «мудро». Она платила за вспышку в 1 балл пять монет, за вспышку в два балла 10 монет, ну а за вспышку в три балла 15 монет. Нужно ли говорить о том, что данные этой обсерватории отличались огромным количеством сильных вспышек!
Связь вспышек с магнитными полями активных областей Солнца сейчас точно установлена. Посмотрим, что же такое активные области.
На Солнце существуют так называемые пояса активности, расположенные к северу и югу от экватора. Именно в этих поясах наблюдаются сильные магнитные поля, которые нарастают и распадаются за время от суток до месяцев. В тех местах, где происходит нарастание напряженности магнитного поля, и происходят, такие явления, как пятна, вспышки и факелы. Области проявление вариаций солнечного магнетизма называются активными областям» Размеры их колеблются от десяти тысяч до сотен тысяч километров. Кроме пятен и вспышек, активные области замечательны тем, что они излучают рентгеновские и ультрафиолетовые фотоны. Мало того, над активными областями иногда исчезает верхняя хромосфера!
Структура активной области полностью определяется совокупностью магнитных полей в ней. Но что можно сказать о самих полях? Почему происходят такие сильные изменения в магнитных свойствах Солнца?
На Солнце мы имеем дело с веществом, представляющим собой плазму — хороший проводник. Движение же проводника в магнитном поле всегда приводит к появлению электрического тока.
Совершенно ясно, что токи эти, в свою очередь, вызывают изменение поля. Ну а поскольку, как мы знаем, на Солнце наблюдается весьма сложная картина движений плазмы—здесь и грануляция, и супергрануляция, дифференциальное вращение и многое другое, она и приводит к сильной изменчивости магнитных полей, наиболее ярко проявляющихся в поясах активности.
Магнитные поля на Солнце не предоставлены самим себе. Они тесно взаимодействуют с проводящим веществом, и в этом суть дела. При высокой проводимости поле «вмораживается» в плазму, магнитный поток остается постоянным, двигаясь вместе с плазмой. Для этого, конечно, нужно, чтобы плотность плазмы была достаточно высока. Так и случается в конвективной зоне, откуда магнитные поля как бы всплывают вместе с веществом к фотосфере. Далее, уже в атмосфере Солнца, и разыгрываются все процессы, связанные с аннигиляцией, перезамыканием полей различной полярности.
Посмотрим теперь, что происходит на Солнце во время вспышки. Задолго до самой вспышки, в течение нескольких часов или даже суток, в активной области, в ее магнитных полях запасается избыточная энергия. Происходят процессы, внешне аналогичные закручиванию резинки в «двигателе» игрушечного самолета. Ситуации здесь действительно геометрически похожи — такие закрученные структуры нередко можно наблюдать в атмосфере Солнца, в районе областей сильного магнитного поля. В закрученных полях должны возникать токи, так как в них меняется направление поля.
К тому же может случиться, что всплывшее поле имеет другую полярность, чем-то, которое уже было на этом месте. Здесь тоже, разумеется, возникают токи. Именно таким образом и запасается энергия перед вспышкой.
Сегодня принято считать, что главная причина появления вспышки лежит в очень быстрой перестройке магнитных полей, их перезамыкании. В области перезамыкания выделяется около половины общей магнитной энергии. Этого вполне хватает, чтобы обеспечить вспышку требуемой энергии и выбросить в корону нагретую плазму. Вообще говоря, чудовищная энергия магнитных полей высвобождается в виде взрыва, но этот взрыв длится иногда несколько минут, а то и сутки.
Значительная часть энергии идет на ускорение электронов, скорость движения которых достигает половины скорости света. Движение таких электронов в магнитном поле и окружающем газе вызывает радиоизлучение и жесткое рентгеновское излучение. Эффекты, вызываемые вспышками на Солнце, столь сильны, что они проявляются даже на нашей планете. Так, во время вспышек нарушается радиосвязь, или, наоборот, становится возможным прием удаленных телепередатчиков, или вдруг начинает приходить радиоизлучение от далеких гроз. Все эти вещи имеют не только научное, во и практическое значение, так как от этих эффектов, с одной стороны, зависит радиосвязь на Земле, а с другой стороны — космонавты в космосе практически ничем не защищены от жесткого излучения, сопровождающего вспышки.
Советский ученый А. Чижевский провел огромную работу, пытаясь установить зависимость между солнечной активностью и частотой различных эпидемий на Земле. Он обнаружил удивительные закономерности. Вспышки различных болезней очень точно «отслеживают» изменения в активности Солнца.
Труды Чижевского не сразу получили признание, хотя и до него ученые замечали, что активность Солнца связана с различными явлениями на Земле. Свою замечательную книгу «Земное эхо солнечных бурь» он написал на французском языке и впервые издал в Париже. Интересно, что одним из первых смелые идеи Чижевского оценил К. Циолковский.
Следует сказать о том, что Чижевский не считал солнечную активность прямой причиной вспышек эпидемий и заболеваний. Он полагал, что деятельность Солнца «лишь способствует» развитию болезней на Земле.
Одна из глав его книги называется очень образно: «Спазмы Земли в объятиях Солнца». В этой главе он приводит перечень явлений в органическом мире Земли, связанных с изменениями в солнечной активности.
Интересно, что еще В. Гершель отметил в 1801 году зависимость урожая зерновых от числа солнечных пятен. Поскольку хлеб все-таки вещь более нужная, чем вино, то лишь в 1878 году удалось выяснить, что количество и качество производимого в Германии вина тоже таинственным образом связано с пятнами на Солнце.
Да что там вино! Чижевскому удалось установить, что от активности Солнца зависит частота несчастных случаев, преступлений, внезапных смертей, эпизоотии и падеж скота, и целый ряд других явлений: уровень озер, грунтовых вод сток рек, толщина донных отложений ила, количество льда в полярных морях, повторяемость засух, ураганов, ливней, годовые температуры.
Удалось обнаружить 27-дневный цикл погоды. Но ведь период вращения Солнца вокруг собственной оси также равен примерно 27 дням.
Многие считают, что активность Солнца и, в частности, хромосферные вспышки оказывают прямое воздействие на погоду. Но у этой идеи есть и свои противники.
Да что там погода! Высказываются мысли о том, что с солнечной активностью связаны изменения скорости суточного вращения Земли! А ведь эти изменения могут вызывать такое грозное явление природы, как землетрясения. Кстати, от вращения планеты зависят и погода и климат.
Чижевского можно с полным правом считать первым человеком, который перекинул мост между Солнцем и Землей. Его идеи оказались настолько плодотворными, что сейчас возникает новая отрасль науки — гелиобиология.
Многие десятки обсерваторий всего мира осуществляют круглосуточный контроль за Солнцем. Кроме того, различная научная аппаратура для исследования Солнца запускается на шарах, зондах, самолетах, ракетах и спутниках. Радиотелескопы слушают радиоголос Солнца. Долгоживущие орбитальные станции типа «Салют», космические корабли «Беги» и «Вояджеры» имеют на борту приборы, давшие неоценимую информацию о межпланетном пространстве, плазме, солнечном магнитном поле, ударных волнах и т. д.
2.3. Корона
Корона устроена существенно проще хромосферы и фотосферы. Разумеется, это не означает, что мы знаем о ней больше, чем о нижних слоях. И все-таки ее жизнь не отягчена такими бурными событиями, как жизнь хромосферы и фотосферы, хотя, конечно, отголоски различных катаклизмов доходят и до короны.
Солнечную корону видел каждый, кому посчастливилось наблюдать полное солнечное затмение.
Корона, особенно ярка, вблизи Солнца, а длинные лучи простираются на большие расстояния. Форма короны заметно меняется в зависимости от уровня солнечной активности. В минимуме корона симметрична, а в максимуме над активными областями наблюдаются особенно интенсивные лучи.
Характерной особенностью короны является ее чрезвычайно высокая (по сравнению с фотосферой) температура, превышающая миллионы градусов. Поскольку горячая корона представляет собой хорошо проводящую плазму, то отчетливо наблюдаемая в ней волокнистая структура как бы отслеживает «магнитные силовые линии и тем самым показывает» астрономам структуру магнитного поля Солнца. Кстати говоря, с высокой температурой короны связана одна поучительная история.
Уже давно в спектре короны наблюдались сильные эмиссионные линии, длины волн которых были точно известны более пятидесяти лет назад. Но в среде астрономов и спектроскопистов слишком сильно было предубеждение о невозможности высокой температуры короны. Поэтому перебиралось огромное количество «кандидатов» в качестве источников возбуждения этих линий, но все было тщетно.
Эти линии приписали неизвестному элементу «коронию». Затем линии «корония» открыли при исследовании спектров повторной новой Змееносца. Это случилось в 1933 году.
Заведомо было ясно, что уж во время вспышек новой температуры должны быть достаточно высоки. Но только шесть лет спустя удалось установить, что неизвестные линии в короне принадлежат не «коронию», а обычным земным элементам, в частности железу, но только атомы железа находятся в очень высокой степени ионизации: электронные оболочки атома просто «ободраны». Ну а поскольку такое возможно лишь при очень высоких температурах, стало ясно, что корона очень сильно нагрета. В состав короны входят полностью ионизированные водород и гелий, углерод, азот и кислород, ионизированные вплоть до электронов самой глубокой оболочки, и другие элементы с различной степенью ионизации.
На этом примере видно, как радикально изменялись представления о Солнце за очень короткий промежуток времени.
Не менее серьезные изменения произошли и в наших знаниях о межпланетной среде. Сегодня мы уже знаем, что это не пустота, земля буквально плавает в верхней части короны Солнца, и она обдувается потоком частиц — солнечным ветром.
Явление это, как нередко бывает в науке, предсказано было теоретически, «на кончике пера», в 1958 году, совсем недавно. Интересно, что толчком послужил анализ поведения комет.
Давно считалось, что солнечное излучение влияет на форму и давление вещества в хвостах комет, но только в начале 50-х годов нашего столетия было строго показано, что как ионизация, так и направленное наружу ускорение материала в хвостах комет намного больше, чем, если бы это было вызвано одним световым давлением. Кроме того, хвосты комет явно реагировали на солнечную активность: ускорение движения вещества увеличивалось в годы повышенной солнечной активности.
Все встало на свои места, когда советская станция «Луна-2» обнаружила в межпланетном пространстве потоки плазмы, которые с довольно большими скоростями двигались от Солнца. Потоки эти состоят из протонов, электронов, более тяжелых ионов, и в зависимости от солнечной активности они имеют различную скорость — от 200 до 1000 километров в секунду. Таким образом, оказалось, что из нашей звезды, из ее короны происходит непрерывное истечение вещества.
Связь солнечного ветра со структурой короны обнаружилась довольно быстро, и здесь ученым пришлось обратить особое внимание на обширные области в короне, практически не дающие рентгеновского излучения. Области эти получили название корональных дыр. Им присущи интересные особенности. Во-первых, плотность короны над дырами примерно в три раза ниже, чем для среднего спокойного Солнца. Во-вторых, температура короны над ними заметно ниже, она составляет «всего» миллион градусов, тогда как над спокойными нормальными областями приближается к двум миллионам градусов.
Интересно, что в фотосфере и нижней хромосфере дыры проявляются мало, а чаще всего вообще не проявляются. Ни грануляция, ни супергрануляция, по всей, видимости, никак с ними не связаны, приток механической энергии, проходящий через фотосферу вверх (акустические волны), вероятно, один и тот же внутри и вне дыр. Но тогда непонятно, на что же расходуется избыток энергии. Ведь температура и плотность в корональных дырах поменьше, чем в окружающих областях, а это означает меньшие потери на излучение (именно поэтому дыры и выглядят темными).
Вопрос этот не простой, и ответ на него был найден не сразу. Лишь данные, полученные в последнее время, самым решительным образом продемонстрировали тот факт, что таинственный избыток энергии идет на создание и ускорение солнечного ветра, который истекает главным образом из областей, где расположены корональные дыры.
Самые крупные дыры расположены у полюсов Солнца. Эти дыры живут особенно долго: космический корабль «Скайлэб» наблюдал полярную дыру в течение восьми месяцев. Размеры этих дыр позволяют предположить, что из полярных областей Солнца исходит солнечный ветер огромной силы. По сравнению с ним солнечный ветер, наблюдающийся в околоземном пространстве, показался бы совсем слабым.
Чтобы представить себе масштабы этого явления, заметим, что солнечный ветер уносит ежесекундно около миллиона тонн вещества! Солнечный ветер оказывает сильное воздействие на нашу планету, вызывая, например, полярные сияния. Давайте посмотрим немного подробнее, как взаимодействуют потоки солнечной плазмы с Землей, вернее, не с твердым телом планеты, а с самыми внешними ее оболочками.
Итак, в течение многих миллиардов лет потоки солнечной плазмы атакуют Землю. Первым защитным бастионом здесь является магнитное поле Земли. Именно оно не дает частицам солнечного ветра возможность напрямую бомбардировать Землю. Под воздействием потока плазмы геомагнитное поле «поджимается» ближе к дневной поверхности Земли, а солнечный ветер начинает обтекать магнитное препятствие, встретившееся на его пути. Причем, вполне естественно, напряженность геомагнитного поля при такой деформации возрастает.
Все эти события разыгрываются в некой довольно узкой зоне, расположенной от нас на расстоянии 10—12 земных радиусов. А во время сильных магнитных бурь граница магнитосферы сильно приближается к нам, и геомагнитное поле поджато до 4—6 земных радиусов.
Однако некоторые наиболее энергичные частицы могут прорываться через магнитосферные щели-участки, где поле очень слабое. Эти частицы ответственны за разрушение ионосферы Земли, и, следовательно, за все те нарушения радиосвязи, о которых мы говорили. Около магнитных полюсов силовые линии геомагнитного поля расположены ближе к поверхности Земли. Заряженные частицы солнечного ветра, двигаясь вдоль магнитных силовых линий, проникают в полярных районах более глубоко в атмосферу и, взаимодействуя там с атомами и молекулами, передают им часть своей энергии. В верхней атмосфере возбуждается таким путем свечение, и мы можем наблюдать одно из самых красивых явлений природы — полярные сияния.
Все явления, о которых мы сейчас говорили, тесно связаны с магнитными полями Солнца. Природа вспышек, протуберанцев, солнечных пятен станет ясной лишь тогда, когда до конца будет понят механизм, приводящий к возникновению магнитных полей на Солнце. Сейчас общепринятой теории всех этих явлений нет. Именно поэтому мы не понимаем, в частности, чем обеспечена устойчивость солнечных пятен, как происходит нагрев короны и т. д.
Но чувство неудовлетворенности от, в общем-то, большого числа нерешенных загадок, которые ставит нам Солнце, отчасти смягчается тем обстоятельством, что все эти нерешенные вопросы мы не в состоянии даже поставить по отношению к другим солнцам — далеким звездам. Исследование Солнца дает нам ключ к пониманию множества процессов, проходящих в дальнем космосе, и, не будь Солнца, мы вынуждены были бы ограничиваться лишь догадками.
3. Внутренние строение солнца.
Наше Солнце — это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объём Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.
В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не даёт ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. Кельвинов, происходит выделение энергии.
Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалёком будущем человек сможет научиться использовать её и в мирных целях.
Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.
Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звёздах, тогда как лучистый и конвективный переносы очень важны.
Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света — квантов.
Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты всё время меняют направление, почти столь же часто двигаясь назад, как и вперёд. Но когда они в конце концов выберутся наружу, это будут уже совсем другие кванты. Что же с ними произошло?
В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или даже несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты всё меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты — сначала рентгеновских, потом ультрафиолетовых и наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны именно к нему.
Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.
На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией.
Что такое конвекция? Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. В жаркий день, когда земля нагрета лучами
Солнца, на фоне удалённых предметов хорошо заметны поднимающиеся струйки горячего воздуха. Их легко наблюдать и над пламенем газовой горелки, и над раскалённой конфоркой плиты. То же самое происходит и на Солнце в области конвекции. Огромные потоки горячего газа поднимаются вверх, где отдают своё тепло окружающей среде, а охлажденный солнечный газ опускается вниз. Похоже, что солнечное вещество кипит и перемешивается, как вязкая рисовая каша на огне.
Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда всё же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.
4. Источники энергии солнца.
Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» даёт ему энергию?1 Ответы на эти вопросы учёные искали веками, и только в начале XX в. было найдено правильное решение. Теперь известно, что Солнце, как и другие звёзды, светит благодаря протекающим в его недрах термоядерным реакциям. Что же это за реакции?
Если ядра атомов лёгких элементов сольются в ядро атома более тяжёлого элемента, то масса нового ядра окажется меньше, чем суммарная масса тех ядер, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.
Основное вещество, составляющее Солнце, водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% — более тяжёлым элементам, таким, как углерод, азот, кислород и металлы. Главным «топливом» на Солнце служит именно водород. Из четырёх атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6-10" Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0° С до точки кипения 1000 м3 воды!
Рассмотрим механизм термоядерной реакции превращения водорода в гелий, которая, по-видимому, наиболее важна для большинства звёзд. Называется она протон-протонной, так как начинается с тесного сближения двух ядер атомов водорода — протонов.
Протоны заряжены положительно, поэтому взаимно отталкиваются, причём, по закону Кулона, сила этого отталкивания обратно пропорциональна квадрату расстояния и при тесных сближениях должна стремительно возрастать. Однако при очень высоких температуре и давлении скорости теплового движения частиц столь велики, а частицам так тесно, что наиболее быстрые из них всё же сближаются друг с другом и оказываются в сфере влияния ядерных сил. В результате может произойти цепочка превращений, которая завершится возникновением нового ядра, состоящего из двух протонов и двух нейтронов, — ядра гелия.
Далеко не каждое столкновение двух протонов приводит к ядерной реакции. В течение миллиардов лет протон может постоянно сталкиваться с другими протонами, так и не дождавшись ядерного превращения. Но если в момент тесного сближения двух протонов произойдет ещё и другое маловероятное для ядра событие — распад протона на нейтрон, позитрон и нейтрино (такой процесс называется бета-распадом), то протон с нейтроном объединятся в устойчивое ядро атома тяжёлого водорода — дейтерия.
Ядро дейтерия (дейтон) по своим свойствам похоже на ядро водорода, только тяжелее. Но в отличие от последнего в недрах звезды ядро дейтерия долго существовать не может. Уже через несколько секунд, столкнувшись ещё с одним протоном, оно присоединяет его к себе, испускает мощный гамма-квант и становится ядром изотопа гелия, у которого два протона связаны не с двумя нейтронами, как у обычного гелия, а только с одним. Раз в несколько миллионов лет такие ядра лёгкого гелия сближаются настолько тесно, что могут объединиться в ядро обычного гелия, «отпустив на свободу» два протона.
Итак, в итоге последовательных ядерных превращений образуется ядро обычного гелия. Порождённые
в ходе реакции позитроны и гамма-кванты передают энергию окружающему газу, а нейтрино совсем уходят из звезды, потому что обладают удивительной способностью проникать через огромные толщина вещества, не задев ни одного атома.
Реакция превращения водорода в гелий ответственна за то, что внутри Солнца сейчас гораздо больше гелия, чем на его поверхности. Естественно, возникает вопрос: что же будет с Солнцем, когда весь водород в его ядре выгорит и превратится в гелий, и как скоро это произойдёт? Оказывается, примерно через 5 млрд. лет содержание водорода в ядре Солнца настолько уменьшится, что его «горение» начнётся в слое вокруг ядра. Это приведёт к «раздуванию» солнечной атмосферы, увеличению размеров Солнца, падению температуры на поверхности и повышению её в ядре. Постепенно Солнце превратится в красный гигант — сравнительно холодную звезду огромного размера с атмосферой, превосходящей границы орбиты Земли. Жизнь Солнца на этом не закончится, и оно будет претерпевать ещё много изменений, пока в конце концов не станет холодным и плотным газовым шаром, внутри которого уже не происходит никаких термоядерных реакций.
5. Колебания Солнца.
Земная сейсмология основана ил особенностях распространения звука под землёй. Однако на Солнце сейсмограф (прибор, регистрирующий колебания почвы) поставить нельзя. Поэтому колебания Солнца измеряют совершенно другими методами. Главный из них основан на эффекте Доплера. Так как солнечная поверхность ритмически опускается и поднимается (колеблется), то ее приближение-удаление сказывается на спектре излучаемого света. Исследуя спектры разных участков солнечного диска, получают картину распределения скоростей; конечно же, со временем она меняется — волны бегут. Периоды этих воли лежат в диапазоне примерно от 3 до 10 мин. Когда же они впервые были открыты, найденное значение периода составило примерно 5 мин. С тех пор все эти колебания называют «пятиминутные».
Скорости колебания солнечной поверхности очень малы — десятки сантиметров в секунду, и измерить их невероятно сложно. Но часто интересно не само значение скорости, а то, как оно меняется с течением времени (как волны проходят по поверхности). Допустим, человек находится в помещении с плотно зашторенными окнами; па улице солнечно, по в комнате полумрак И вдруг едва заметное движение воздуха чуть сдвигает штору, и в глаза ударяет ослепляющий солнечный луч. Лёгкий ветерок вызывает столь сильный эффект! Примерно так же измеряют учёные малейшие изменения лучевой скорости солнечной поверхности. Роль шторы играют линии поглощения в сектор Солнца (см. статью «Анализ видимого света»). Прибор, измеряющий яркость солнечного света, настраивается так, чтобы он пропускал лишь свет с длиной волны точно в центре какой-либо узкой линии поглощения. Тогда при малейшем изменении длины волны на вход прибора попадёт не тёмная линия, а яркий соседний участок непрерывного спектра. По это ещё не всё.
Чтобы измерить период волны с максимальной точностью, сё нужно наблюдать как можно дольше, причём без перерывов, иначе потом нельзя будет определить, какая это волна — та же самая или уже другая. Л Солнце каждый вечер скрывается за горизонтом, да ещё тучи время от времени набегают...
Первое решение проблемы состояло в наблюдениях за Южным полярным кругом — там Солнце летом не заходит за горизонт неделями и к тому же больше ясных дней, чем в Заполярье. Однако налаживать работу астрономов в Антарктиде сложно и дорого. Другой предложенный путь более очевиден, но ещё более дорог: наблюдения из космоса. Такие наблюдения иногда проводятся как побочные исследования (например, на отечественных «Фобосах», пока они летели к Марсу). В конце 1995 г. был запущен международный спутник SOHO (Solar and Hemispheric Observatory), на котором установлено множество приборов, разработанных учёными разных стран.
Но большую часть наблюдений по-прежнему проводят с Земли. Чтобы избежать перерывов, связанных с ночами и плохой погодой, Солнце наблюдают с разных континентов. Ведь когда в Восточном полушарии ночь, в Западном — день, и наоборот. Современные методы позволяют представить такие наблюдения как один непрерывный ряд. Немаловажное условие для этого — чтобы телескопы и приборы были одинаковыми. Подобные наблюдения проводят в рамках крупных международных проектов.
Что же удалось узнать о Солнце, изучая эти необычные, беззвучные звуковые волны? Сначала представления об их природе не сильно отличались от того, что было известно о колебаниях земной коры. Учёные представляли себе, как процессы на Солнце (например, грануляция) возбуждают эти волны, и они бегут по поверхности нашего светила, словно морские волны по водной глади.
Но в дальнейшем обнаружился очень интересный факт; оказалось, что некоторые волны в разных частях солнечного диска связаны между собой (физики говорят: имеют одну фазу). Это можно представить себе так, будто вся поверхность покрыта равномерной сеткой воли, по в некоторых местах она не видна, а в других — отчётливо проявляется. Получается, что разные области имеют, тем не менее, согласованную картину осцилляции. Исследователи пришли к выводу, что солнечные колебания носят глобальный характер: волны пробегают очень большие расстояния и в разных местах солнечного диска видны проявления одной и той же волны. Таким образом, можно сказать, что Солнце «звучит, как колокол», т. е. как одно целое.
Как и в случае с Землёй, колебания поверхности Солнца — лишь отзвук тех волн, которые распространяются в его глубинах. Одни волны доходят до центра Солнца, другие затухают на полпути. Это и помогает исследовать свойства разных частей солнечных недр. Изучая волны с разной глубиной проникновения, удалось даже построить зависимость скорости звука от глубины! А поскольку из теории известно, что на нижней границе зоны конвекции должно быть резкое изменение скорости звука, удалось определить, где начинается солнечная конвективная зона. Это на сегодня одно из важнейших достижений гелиосейсмологии.
Есть у гелиосейсмологии и свои проблемы. Например, пока не удалось выяснить причину колебаний солнечной поверхности. Считается, что наиболее вероятный источник колебании -грануляция: выходящие на поверхность потоки раскалённой плазмы, подобно мощным фонтанам, вызывают разбегающиеся во все стороны волны. Однако на деле всё не так просто, и теоретики пока не смогли удовлетворительно описать эти процессы. В частности, неясно, почему волны столь устойчивы, что могу:1 обежать всё Солнце, не затухая?
С помощью методов гелиосейсмологии удалось установить, что внутренняя часть Солнца (ядро) вращается заметно быстрее, чем наружные слои. Неравномерное вращение Солнца оказывает на его осцилляции такое же воздействие, как трещина на колокол. В результате «звук» становится не очень чистым — изменяются существующие периоды колебаний и появляются новые. Это даёт возможность исследовать вращение внутренних слоев, которое другими методами пока изучать нельзя. Считается, что именно благодаря неравномерному вращению Солнце имеет магнитное поле.
Вот такая неожиданная и бурно развивающаяся сейчас область науки возникла из, казалось бы, ничем не примечательных измерений движений солнечной поверхности.
6. Солнце и жизнь на Земле.
Солнце освещает и согревает нашу планету, без этого была бы невозможна жизнь на ней не только человека, но даже микроорганизмов. Солнце — главный (хотя и не единственный) двигатель происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц оказывают постоянное влияние на ее жизнь.
Солнце посылает па Землю электромагнитные волны всех областей спектра — от многокилометровых радиоволн до гамма-лучей. Окрестностей Земли достигают также заряженные частицы разных энергий — как высоких (солнечные космические лучи), так и низких и средних (потоки солнечного ветра, выбросы от вспышек). Наконец, Солнце испускает мощный поток элементарных частиц — нейтрино. Однако воздействие последних на земные процессы пренебрежимо мало: для этих частиц земной шар прозрачен, и они свободно сквозь него пролетают.
Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле). Но их энергии достаточно для того, чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты.
6.1. Энергия солнечного света.
Электромагнитное излучение подвергается строгому отбору в земной атмосфере. Она прозрачна только для видимого света и ближних ультрафиолетового и инфракрасного излучений, а также для радиоволн в сравнительно узком диапазоне (от сантиметровых до метровых). Всё остальное излучение либо отражается, либо поглощается атмосферой, нагревая и ионизуя её верхние слои.
Поглощение рентгеновских и жёстких ультрафиолетовых лучей начинается на высотах 300—350 км; на этих же высотах отражаются наиболее длинные радиоволны, приходящие из космоса. При сильных всплесках солнечного рентгеновского излучения от хромосферных вспышек рентгеновские кванты проникают до высот 80— 100 км от поверхности Земли, ионизуют атмосферу и вызывают нарушение связи на коротких волнах.
Мягкое (длинноволновое) ультрафиолетовое излучение способно проникать ещё глубже, оно поглощается на высоте 30—35 км. Здесь ультрафиолетовые кванты разбивают на атомы
(диссоциируют) молекулы кислорода (О2) с последующим образованием озона (О3). Тем самым создаётся не прозрачный для ультрафиолета «озонный экран, предохраняющий жизнь па Земле от гибельных лучей. Не поглотившаяся часть наиболее длинноволнового ультрафиолетового излучения доходит до земной поверхности. Именно эти лучи вызывают у людей загар и даже ожоги кожи при длительном пребывании на солнце.
Излучение в видимом диапазоне поглощается слабо. Однако оно рассеивается атмосферой даже в отсутствие облаков, и часть его возвращается в межпланетное пространство. Облака, состоящие из капелек воды и твёрдых частиц, значительно усиливают отражение солнечного излучения. В результате до поверхности планеты доходит в среднем около половины падающего на границу земной атмосферы света.
Количество солнечной энергии, приходящейся на поверхность площадью 1 м, развёрнутую перпендикулярно солнечным лучам на границе земной атмосферы, называется солнечной постоянной. Измерять её с Земли очень трудно, и потому значения, найденные до начала космических исследований, были весьма приблизительными. Небольшие колебания (если они реально существовали) заведомо «тонули» в неточности измерений. Лишь выполнение специальной космической программы по определению солнечной постоянной позволило найти её надёжное значение. По последним данным, оно составляет 1370 Вт/м2 с точностью до 0,5%. Колебаний, превышающих 0,2%, за время измерений не выявлено.
На Земле излучение поглощается сушей и океаном. Нагретая земная поверхность в свою очередь излучает в длинноволновой инфракрасной области. Для такого излучения азот и кислород атмосферы прозрачны. Зато оно жадно поглощается водяным паром и углекислым газом. Благодаря этим малым составляющим воздушная оболочка удерживает тепло. В этом и заключается парниковый эффект атмосферы. Между приходом солнечной энергии на Землю и её потерями на планете, в общем, существует равновесие: сколько поступает, столько и расходуется. В противном случае температура земной поверхности вместе с атмосферой либо постоянно повышалась бы, либо падала.
6.2. Солнечный ветер и межпланетные магнитные поля.
В конце 50-х гг. XX в. американский астрофизик Юджин Паркер пришёл к выводу, что, поскольку газ в солнечной короне имеет высокую температуру, которая сохраняется с удалением от Солнца, он должен непрерывно расширяться, заполняя Солнечную систему. Результаты, полученные с помощью советских и американских космических аппаратов, подтвердили правильность теории Паркера.
В межпланетном пространстве действительно мчится направленный от Солнца поток вещества, получивший название солнечный ветер. Он представляет собой продолжение расширяющейся солнечной короны; составляют его в основном ядра атомов водорода (протоны) и гелия (альфа-частицы), а также электроны. Частицы солнечного ветра летят со скоростями, составляющими несколько сот километров в секунду, удаляясь от Солнца на многие десятки астрономических единиц — туда, где межпланетная среда Солнечной системы переходит в разреженный межзвёздный газ. А вместе с ветром в межпланетное пространство переносятся и солнечные магнитные, поля.
Общее магнитное поле Солнца по форме линий магнитной индукции немного напоминает земное. Но силовые линии земного поля близ экватора замкнуты и не пропускают направленные к Земле заряженные частицы. Силовые линии солнечного поля, напротив, в экваториальной области разомкнуты и вытягиваются в межпланетное пространство, искривляясь подобно спиралям. Объясняется это тем, что силовые линии остаются связанными с Солнцем, которое вращается вокруг своей оси. Солнечный ветер вместе с «вмороженным* в него магнитным полем формирует газовые хвосты комет, направляя их в сторону от Солнца. Встречая на своём пути Землю, солнечный ветер сильно деформирует её магнитосферу, в результате чего наша планета обладает длинным магнитным «хвостом», также направленным от Солнца. Магнитное поле Земли чутко отзывается на обдувающие её потоки солнечного вещества.
6.3. Бомбардировка энергичными частицами.
Помимо непрерывно «дующего» солнечного ветра наше светило служит источником энергичных заряженных частиц (в основном протонов, ядер атомов гелия и электронов) с энергией 106—109 электронвольт (эВ). Их называют солнечными космическими лучами. Расстояние от Солнца до Земли — 150 млн. километров —наиболее энергичные из этих частиц покрывают всего за 10—15 мин. Основным источником солнечных космических лучей являются хромосферные вспышки.
По современным представлениям, вспышка — это внезапное выделение энергии, накопленной в магнитном поле активной зоны. На определен-1 гой высоте над поверхностью Солнца возникает область, где магнитное коле на небольшом протяжении резко меняется по величине и направлению. В какой-то момент силовые линии поля внезапно «пересоединяются>>, конфигурация его резко меняется, что сопровождается ускорением заряженных частиц до высокой энергии, нагревом вещества и появлением жесткого электромагнитного излучения. При этом происходит выброс частиц высокой энергии в межпланетное пространство и наблюдается мощное излучение в радиодиапазоне.
Хотя «принцип действия» вспышки учёные, по-видимому, поняли правильно, детальной теории вспышек пока нет.
Вспышки — самые мощные взрывоподобные процессы, наблюдаемые на Солнце, точнее в его хромосфере. Они могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 1025 Дж Примерно такое же количество тепла приходит от Солнца на всю поверхность пашей планеты за целый год.
Потоки жёсткого рентгеновского излучения и солнечных космических лучей, рождающиеся при вспышках, оказывают сильное влияние на физические процессы в верхней атмосфере Земли и околоземном пространстве. Если не принять специальных мер, могут выйти из строя сложные космические приборы и солнечные батареи. Появляется даже серьёзная опасность облучения космонавтов, находящихся на орбите. Поэтому в разных странах проводятся работы по научному предсказанию солнечных вспышек на основании измерений солнечных магнитных полей.
Как и рентгеновское излучение, солнечные космические лучи не доходят до поверхности Земли, но могут ионизовать верхние слои её атмосферы, что сказывается на устойчивости радиосвязи между отдалёнными пунктами. Но действие частиц этим не ограничивается. Быстрые частицы вызывают сильные токи в земной атмосфере, приводят к возмущению магнитного поля нашей планеты и даже влияют па циркуляцию воздуха в атмосфере.
Наиболее ярким и впечатляющим проявлением бомбардировки атмосферы солнечными частицами являются полярные сияния. Это свечение в верхних слоях атмосферы, имеющее либо размытые (диффузные) формы, либо вид корон или занавесей (драпри), состоящих из многочисленных отдельных лучей. Сияния обычно бывают красного или зелено го цвета: именно так светятся основные составляющие атмосферы — кислород и азот — при облучении и энергичными частицами. Зрелищ бесшумно возникающих красных и зелёных полос и лучей, беззвучная игра цветов, медленное или почти мгновенное угасание колеблющих «занавесей» оставляют незабываемое впечатление. Подобные явления лучше всего видны вдоль овала полярных сияний, расположенного между 100 и 20° широты от магнитных полюсов. В период максимумов солнечной активности в Северном полушарии овал смещается к югу, и сияние можно наблюдать в более низких широтах.
Частота и интенсивность полярных сияний достаточно чётко слег ют солнечному циклу: в максимум солнечной активности редкий дек: обходится без сияний, а в минимуме они могут отсутствовать месяцам. Наличие или отсутствие полярных сияний, таким образом, служит не плохим показателем активности Солнца. И это позволяет, проследит: солнечные циклы в прошлом, за пределами того исторического периода, когда проводились систематически: наблюдения солнечных пятен.
Заключение.
Мне кажется, что грандиозные проблемы, стоящие перед современной наукой, вряд ли будут когда-либо исчерпаны. Процесс познания не прекратится до тех пор, пока будет существовать человечество как биологический вид. Ну а время его существования во многом зависит от него самого. Бесстрастная природа отпустила нам достаточно времени и на решение ее загадок, и на то, как лучше и разумнее устроить свою собственную жизнь. Хотелось бы надеяться, что человек разумно распорядится этой уникальной возможностью и оставит себе место в окружающем его прекрасном и удивительном мире.
Литература.
Л. Мухин. Мир Астрономии. - М.: Молодая гвардия, 1987.
Энциклопедия для детей астрономия. - М.: Аванта+, 1997.
Е.П. Левитан. Астрономия 11класс.- М.: Просвещение, 1994.
Кононович Э.В. Солнце – дневная звезда.- М.: Просвещение, 1982.
Энциклопедический словарь юного астронома. – М.: Педагогика, 1986.
Климишин И.А. Элементарная астрономия. – М.: Наука,1991.
Куликовский П.Г. Справочник любителя астрономии. – М.: Наука, 1971.
Воронцов – Вельяминов Б.А. Очерки о Вселенной. М.: Наука, 1980.
Приложение.
Вращение солнца в разных широтах
Пятна на солнце.
Строение Солнца. Солнце в рентгеновских лучах.
Устное выступление.
Солнце освещает и согревает нашу планету, без этого была бы невозможна жизнь на ней не только человека, но даже микроорганизмов. Солнце — главный (хотя и не единственный) двигатель происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц оказывают постоянное влияние на ее жизнь. В течение тысячелетий люди занимались главным образом наблюдениями за положением Солнца на небе, за его движением по небесному своду. Некоторые просвещенные мыслители древности полагали даже, что и Солнце и Луна каждый вечер потухают, а на следующий день их заменяют новые солнца и луны. Постепенно в древности сформировалось представление о том, что наше Солнце — «око мира» — небесное тело, состоящее из чистого света и огня. Эта точка зрения была поколеблена в XVII веке, когда телескопы обнаружили пятна на Солнце. Сначала их сравнивали со шлаками, по аналогии с расплавленным металлом, но затем постепенно стали появляться идеи о темном теле Солнца, окруженном океаном огня. Для изучения Солнца еще в XIX веке использовали фотографию, с помощью которой удалось установить, что пятна — самые дальние от нас образования, выше пятен расположены факелы. Видимую поверхность Солнца стали называть фотосферой (сферой света). Температура фотосферы 6700К. Эта видимая поверхность Солнца напоминает кипящую рисовую кашу. Иными словами, она имеет ячеистую, или гранулированную структуру. Астрономы многократно фотографировали эти структуры и назвали их гранулами. Гранулы — это многоугольники на поверхности фотосферы, пересеченные узкими темными прожилками. Размеры гранул порядка тысячи километров, живут они несколько минут, сменяясь потом другими гранулами. Именно поэтому и возникло довольно удачное сравнение с кипящей рисовой кашей. На Солнце имеются «дефекты» - пятна. Пятна редко появляются в одиночку, обычно возникает сразу группа пятен. Появлению пятен в активной области предшествует рождение факела — более яркой области фотосферы. Больше всего солнечная активность проявляется в хромосфере — сфере цвета, имеющей красноватый оттенок. Хромосфера — область между фотосферой и короной. Одно из самых интересных и красивых явлений в хромосфере — спикулы. Спикулы — это струи вещества, поднимающиеся вверх со скоростями 20—30 километров в секунду на высоту более 6 тысяч километров. Корона устроена существенно проще хромосферы и фотосферы. Солнечную корону видел каждый, кому посчастливилось наблюдать полное солнечное затмение. Корона, особенно ярка, вблизи Солнца, а длинные лучи простираются на большие расстояния. Форма короны заметно меняется в зависимости от уровня солнечной активности. В минимуме корона симметрична, а в максимуме над активными областями наблюдаются особенно интенсивные лучи. Характерной особенностью короны является ее чрезвычайно высокая (по сравнению с фотосферой) температура, превышающая миллионы градусов. Солнце вращается не как твердое тело. Пятна, находящиеся вблизи экватора Солнца, опережают пятна, расположенные в средних широтах. Следовательно, скорости вращения разных слоев Солнца различны. Экваториальные области делают один оборот вокруг оси Солнца за 25 земных суток, а области вблизи полюсов Солнца — примерно за 30 суток. Наблюдения показывают, что все пятна перемещаются от восточного края к западному. Следовательно, Солнце вращается вокруг своей оси в направлении движения планет вокруг него. На Солнце обнаружено более 70 химических элементов. Самые распространенные элементы на Солнце — водород (около 70% всей массы Солнца) и гелий (более 28%). Гелий («солнечный газ») был впервые открыт на Солнце и только почти через 30 лет — на Земле. В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы). Мне кажется, что грандиозные проблемы, стоящие перед современной наукой, вряд ли будут когда-либо исчерпаны. Процесс познания не прекратится до тех пор, пока будет существовать человечество как биологический вид. Ну а время его существования во многом зависит от него самого.