Вход

Светолокационный измерительный преобразователь расстояния до нижней границы облаков

Реферат* по технологиям
Дата добавления: 22 декабря 1998
Язык реферата: Русский
Word, rtf, 313 кб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше




Неблагоприятная экологическая обстановка на территории Российской Федерации требует уделения особого внимания вопросам охраны природы и экологического воспитания. Контроль за воздействием от хозяйственной деятельности человека на окружающую среду и природный комплекс - необходимая составная часть мероприятий по улучшению использования природных ресурсов. Многие отрасли промышленности, сельского хозяйства в большой степени зависят от четкости, оперативности работы и надежности прогнозов федеральной системы наблюдений и контроля за окружающей средой. Оперативность и своевременность подачи штормовых предупреждений, заблаговременный прогноз опасных и особо опасных явлений погоды являются неотъемлемой частью успешной и безопасной работы многих отраслей хозяйства и транспорта, а долгосрочные метеорологические прогнозы играют решающую роль в организации сельскохозяйственного производства.

Одним из важнейших параметров, определяющих возможность прогнозирования опасных погодных явлений, является высота нижней границы облаков.




Принцип измерения высоты нижней границы облаков, использующийся в измерители высоты облачности ИВО-1М и регистраторе РВО-2.


Под высотой облаков в метеорологии понимают высоту их нижней границы над поверхностью земли. В основном измеряют высоту облаков среднего и нижнего ярусов ( не выше 2500 м.). При этом определяется высота самых нижних облаков. При тумане высота облаков принимается равной нулю, и в аэропортах в данных случаях измеряется “вертикальная видимость”. В основу измерения высоты нижней границы облаков в ИВО-1М и РВО-2 положен метод светолокации.

Этим методом высота нижней границы облаков определяется по времени прохождения светом пути от излучателя света до облака и обратно. Высота облаков Н определяется по формуле:



где - скорость света

- время прохождения света до облака и обратно.

Световой импульс посылается излучателем и после отражения принимается приемником. Излучатель и приемник располагаются в непосредственной близости друг от друга.


Принцип работы измерителя и регистратора нижней границы облаков.


1. Измеритель высоты нижней границы облаков ИВО-1М.


ИВО-1М состоит из передатчика и приемника световых импульсов, пульта управления и комплекта соединительных кабелей. Приемник и передатчик устанавливаются на открытой площадке на расстоянии 8-10 метров друг от друга. Передатчик и приемник аналогичны по конструкции и содержат параболические зеркала, защитные стекла и крышки, которые перед измерениями поднимаются при помощи электродвигателей.

В качестве источника световых импульсов используется троботрон типа ИСШ-100. Мощные световые импульсы прямоугольной формы длительностью около 1мс и частотой 20Гц излучаются вертикально вверх. Часть рассеянной облаком энергии( световые импульсы с гармониками, кратными основной частоте сигнала) возвращается к приемнику и преобразуется фотоэлектронным умножителем ФЭУ-1 в электрические импульсы. Непосредственно в приемнике расположен предварительный широкополосный усилитель. который позволяет уменьшить влияние помех при передаче сигнала к пульту управления, расположенному в помещении на расстоянии до 50 м. от приемопередатчика.

С помощью пульта управления, содержащего электронно-лучевую трубку, оператор может вручную измерять время запаздывания эхо-сигнала, отраженного облаком, относительно зондирующего сигнала, излученного передатчиком. Измерение производится с помощью схемы компенсации, которая содержит регулируемый источник питания и позволяет менять напряжение на правой по схеме пластине ЭЛТ (рис.1).

Поворачивая ручку потанциометра , на которой закреплен указатель шкалы высот, оператор компенсирует напряжение, поступающее от генератора развертки на левую пластину ЭЛТ. Напряжение на выходе генератора развертки за один период излучения возрастает пропорционально времени, прошедшему с момента излучения зондирующего сигнала, и по достижении некоторого уровня, соответствующего диапазону измерения, возвращается к исходному уровню. В соответствии с этим электронный луч пробегает вдоль экрана ЭЛТ слева на право с частотой излучения 20 раз в секунду.


Рис.1 Блок- схема ИВО-1М.


передатчик приемник


8-10 м.




1 2



ЭЛТ

3




4 5



6

пульт управления


может стыковаться с ДВ-1М



1-схема компенсации 4-генератор меток

2-видеоусилитель 5-АРУ

3-генератор разразвертки 6-блок питания



Такая частота повторения ЭЛТ позволяет наблюдать на экране непрерывно-светящуюся картину развертки луча трубки. При наличии эхо-сигнала. поступающего на нижнюю пластину ЭЛТ от видеоусилителя, на линии развертки появится импульс, положение которого относительно линии развертки соответствует запаздыванию эхо-сигнала по отношению к зондирующему. Это запаздывание пропорционально высоте облаков. Отсчет высоты облаков производится оператором после установки середины переднего фронта эхо-сигнала на вертикальную черту в центре экрана.

В пульте управления имеется также схема АРУ, которая позволяет поддерживать неизменной амплитуду эхо-сигналов во всем диапазоне измерения. Генератор меток предназначен для периодической проверки сохранности градуировки шкалы высот в условиях эксплуатации.

Приемник и передатчик должны устанавливаться на расстоянии не менее 200 метров от радиолокационных станций и не менее 500 метров от средневолновых радиостанций.


2.Регистратор нижней границы облаков РВО-2.


Регистратов высоты облачности РВО-2 является усовершенствованным вариантом ИВО-1М, имеет лучшие эксплуатацинно-технические характеристики и более широкие возможности применения.

В РВО-2 улучшена шкала высот. Она разбита на десятки метров, что позволяет произвести считывание показаний о ВНГО с погрешностью не более 5 метров. За счет уменьшения длительности светового импульса, увеличения напряжения на конденсаторе основного разряда импульсной лампы, увеличения крутизны фронтов светового импульса передний фронт сигнала на ЭЛТ пульта управления круче - это обеспечивает более точное измерение ВНГО. Но указанный режим питания импульсной лампы значительно снижает ее ресурс.

РВО-2 электромагнитно совместим с радиотехническими средствами и не имеет таких ограничений по установки приемника и передатчика, как ИВО-1М.

Для устранения запотевания и обмерзания стекол приемника и передатчика обеспечено их подогревание обогревательным элементом мощностью порядка 200 Вт.

РВО-2 комплектуются в 3-х вариантах:

  • в первый вариант (РВО-2) входят: передатчик, приемник световых импульсов и пульт управления;

  • во второй вариант(РВО-2-01) входят: передатчик и приемник световых импульсов, пуль управления, регистратор. Этот вариант обеспечивает измерение ВНГО до 2000 метров и автоматическую регистрацию ее до 1000 метров при расположении пульта управления и регистратора на расстоянии до 50-70 метров от места установки передатчика и приемника;

  • в третий вариант (РВО-2-02) входят: передатчик и приемник световых импульсов, пульт управления, регистратор и выносной пульт. Этот вариант дает возможность измерять и регистрировать ВНГО так же, как и РВО-2-01, и измерять и регистрировать ВНГО до 1000 м. по самописцу выносного пульта при расположении последнего на расстоянии до 8 км. от места установки передатчика и приемник.

Погрешность измерений ВНГО у РВО-2 такая же, как и у ИВО-1М. РВО-2-01 и РВО-2-02 обеспечивают автоматическое измерение и регистрацию ВНГО через 15, 30 или 60 минут в соответствии с установкой “интервал”, при необходимости возможна регистрация ВНГО с интервалом в 3 минуты и непрерывная регистрация втечение 1,5 минуты.


3. Приставка ДВ-1М.


Дистанционная приставка ДВ-1М предназначена для дистанционного измерения ВНГО в комплекте с ИВО-1М или РВО-2 и передачи в канал связи результатов измерений (структурная схема на рис. 2).Основными узлами приставки являются: блок преобразования и блок логической обработки.

Блок преобразования позволяет получить на логическом выходе напряжение постоянного тока, прямопропорциональное времени запаздывания эхо-сигнала относительно зондирующего импульса. С этой целью в блоке преобразования последовательно соединены ждущий мультивибратор, генератор пилообразного напряжения и пиковый детектор.

Особенностью схемы ДВ-1 является наличие дополнительного пикового детектора и схемы сравнения выходных напряжений двух пиковых детекторов. Такая схема позволяет осуществлять логическую фильтрацию результатов измерений на выходе устройства по критерию отношения сигнал/помеха. При отсутствии помехи и наличии эхо-сигнала на входе устройства на выходе обоих пиковых детекторов оказываются равными. Если же облаков нет и отсутствует шумовая помеха (например, при измерениях ночью), то различие напряжений на выходах детекторов будет максимальным. При этом пиковый детектор 1 отключен от ГПИ, который в этом случае формирует импульсы максимальной амплитуды на входе пикового детектора 2. При наличии эхо-сигнала и помехи разность напряжений на пиковых детекторах будет тем больше, чем больше уровень помехи. Такая структурная схема обеспечивает надежную защиту от шумов фоновой засветки без снижения чувствительности к полезным сигналам. Это происходит потому, что при наличии низкой облачности уровень фоновой засветки резко снижается, что и гарантирует достаточно высокий уровень отношения сигнал/шум.

Удаление ДВ-1М от места установки ИВО-1М или РВО-2 до 5 километров.



Основные нормативно-технические характеристики ИВО и РВО.


Параметры

Значения

Диапазон измерений расстояния до светоотражающей поверхности твердой мишени, м


от 50 до 450

Предел допускаемой погрешности измерителя, м

50-150 м

150-500 м



не более (0,1Н+5)

не более (0,074Н+10)

Диапазон измерения времени ( ) прохождения световым импульсом расстояние Н до отражающей поверхности и обратно, нс



от 333 до 3000

Предел допускаемой погрешности в диапазоне

333-1000 нс

1000-3000 нс



не более (0,1 +33)

не более (0,07 +67)

Полный диапазон измерений расстояния до НГО, м


от 50 до 2000



Поверка светолокационного преобразователя ИВО.


При проведении поверки выполняются следующие операции:

  1. внешний осмотр;

  1. опробование;

  1. определение метрологических параметров.


Средства и условия поверки.


При проведении поверки применяются следующие средства поверки:

  • комплект образцовых линий задержки электрического сигнала на 200, 333, 533, 867, 1400, 2133 и 3000 нс, с погрешностью указанной в таблице (см. ниже);

  • вольтметр переменного тока для измерения напряжений питающей сети 1-го класса.





Нормативно-технические характеристики комплекта образцовых кабельных линий задержки для поверки преобразователей типа ИВО и РВО.



время задержки сигнала

( ), нс

предел допускаемой погрешности определения

( ), нс

имитируемая высота,

м

200

13

28-32

333

16

48-52

533

21

77-83

867

26

126-134

1400

41

204-216

2133

54

312-328

3000

73

439-461




При проведении поверки должны выполнятся следующие условия:

  • преобразователь предъявляемый на периодическую поверку должен быть в исправном состоянии;

  • к проведению поверки допускают лиц, прошедших специальную подготовку и имеющих право проведения ведомственной или государственной поверок;

  • при проведении поверки должны соблюдаться условия, обеспечивающие сохранность метрологических характеристик преобразователя и контрольно-поверочной аппаратуры;

  • при проведении поверки допускается нахождение приемника и передатчика в естественных условиях открытой атмосферы, при отсутствии сильных и умеренных осадков и туманов;

  • при проведении поверки должны соблюдаться требования техники безопасности.





Подготовка к поверки и проведение поверки.


Перед проведением поверки проверяется наличие и полнота комплекта и преобразователя и сопроводительной документации, Затем необходимо развернуть приемник и передатчик на местах их установки и замкнуть световой канал с помощью полуоткрытых крышек (ИВО) или наклонных щитов (РВО).

Затем отсоединяется кабель приемника от пульта управления преобразователя и в разрыв включается кабельная вставка с подсоединенным к ней замыкателем. С помощью вольтметра переменного тока проверяется наличие напряжения питания преобразователя, которое должно быть в установленных пределах. Необходимо заранее подготовить протоколы поверки, зафиксировать в них метеорологические параметры окружающей Среды, данные приемника, передатчика и пульта управления, напряжение сети.


Рис. 3 Схема замыкания светового канала преобразователя типа ИВО или РВО для проведения поверки.














L



Проведение поверки начинается с внешнего осмотра. Маркировка всех частей преобразователя должна должна быть отчетливо различима. органы регулировки и настройки должны вращаться плавно, без заеданий, кнопки при нажатии не должны западать. Защитные стекла и отражатели не должны иметь загрязнений, трещин и дефектов. Части разъемов должны легко соединяться и размыкаться. Крышки приемника и передатчика должны свободно открываться и закрываться как в ручную, так и автоматически.

Следующая стадия поверки - опробование. При включении преобразователя в работу должна мигать лампа передатчика. и на экране ЭЛТ появиться линия развертки и сигнал. При включенном обогреве (РВО) защитные стекла приемника и передатчика будут теплыми.

После опробования определяются метрологические параметры преобразователя. Для этого отсоединяют от кабельной вставки замыкатель L3 (см. рис. 4) и на его место подключают к разъемам Ш1 и Ш2 кабельные линии задержки, начиная с линии с минимальной временной задержкой, имитирующей расстояние до НГО, и далее последовательно подключаются линии на 533 нс(80 м), 867 нс(130 м), 1400 нс(210 м), 2133 нс(320 м) и 3000 нс(450 м). Затем операцию повторяют и обратной последовательности.

Рис. 4 Схема подключения при поверки ИВО и РВО.





4 5 6


1 2



3





1- передатчик 4- пульт управления

2- приемник 5- приставка ДВ-1

3- кабельная линия задержки 6- стрелочный указатель


Рис.5 Кабельная вставка для проверки преобразователя типа ИВО или РВО.


Ш2-1 Ш2-2












Ш1 Ш2




L3




Обозначение

Наименование

Ш2-1

Розетка ШР32ПК12НГ

Ш2-2

Вилка ШР32ПК12НШ

Ш1, Ш2

Соединитель радиочастотный СР-50

L3

Кабальный замыкатель из кабеля РК-50 длиной 0,2 м


Полученные результаты заносятся в протокол. Протокол должен содержать информацию о составе поверяемого прибора (заводские номера всех поверяемых приборов, а так же номера ДВ-1 и стрелочного указателя), о метеорологических условиях в которых проходила поверка (температура окружающего воздуха, температура в помещениях, где были установлены пульт управления, ДВ-1 и стрелочный указатель. Кроме того, указываются средства и устройства поверки с заводскими номерами (термометры, вольтметр, рулетка измерительная, комплект линии задежки).

В протоколе указывается и погрешность преобразователя. Рассмотрим определяемые погрешности на примере.


имитируемое расстояние(Н), м

результат измерения(Н*),м

разность а=Н-Н*, м

(а- ),

м

59

60

-1

1

117

120

-3

1

138

140

-2

0

217

220

-3

1

329

330

-1

1

217

220

-3

1

138

140

-2

0

117

120

-3

1

59

60

-1

1

n=11






Систематическая погрешность:



Оценка среднего квадратического отклонения:



Случайная погрешность ( при вероятности Р=0,9):




где - коэффициент Стьюдента.


Суммарная погрешность:



Максимальное значение суммарной погрешности не превышает-4 м.- не превышает предельно допускаемой погрешности. следовательно преобразователь годен к эксплуатации.


Предел допускаемой погрешности:


Имитируемая высота, м

50

110

130

210

320

450

Значение предела, м

10

16

18

25

32

42


На преобразователь, пригодный к эксплуатации, выдается свидетельство о поверке или делается соответствующая запись в формуляре прибора. При отрицательной поверки, прибор снимается с эксплуатации и в его документах делается запись о непригодности и о ее причинах.

Своевременная поверка приборов предохраняет от дополнительных и неоправданных расходов. Если допустить, что аэропорт г.Омска был временно закрыт, то ближайшие аэропорты, которые могут принять самолеты находятся в Тюмени и Новосибирске, и при нынешней стоимости авиатоплива, это обернется большими неоправданными затратами.


Принятые сокращения:


ИВО - измеритель высоты облачности

РВО - реистратор высоты облачности

ЭЛТ - электронно-лучевая трубка

АРУ - автоматическая регулировка усиления

ВНГО - высота нижней границы атмосферы

ГПН - генератор пилообразного напряжения

МУ - методические указания

СИ - средства измерений.










Литература:


1.АфиногеновЛ.П. Романов Е.В.

“Приборы и установки для метеорологических измерений на аэродромах”

Ленинград, Гидрометеоиздат, 1981.


2.Городецкий О.А. Гуральник И.И. Ларин В.В.

“Метеорология, методы и технические средства наблюдений”

Ленинград, Гидрометеоиздат, 1984


3.“Правила эксплуатации метеорологического оборудования аэродромов гражданской авиации СССР” Москва, Гидрометеоиздат, 1981


4.Тюрин Н.И.

“Введение в метеорологию” Москва, Издательство стандартов, 1976
























Российский Государственный Гидрометеорологический Институт

Факультет заочного обучения





Кафедра экспериментальной

физики атмосферы










КУРСОВАЯ РАБОТА




На тему:

“Светолокационный измерительный

преобразователь расстояния до

нижней границы облаков”




Проверил: ______________

Выполнил: Колосов Ю.В.



Факультет - “Метеорология “

IV курс.








ОМСК

1995

© Рефератбанк, 2002 - 2024