Вход

Математическое моделирование и оптимизация в химической технологии

Реферат по математике
Дата добавления: 15 мая 2000
Язык реферата: Русский
Word, rtf, 242 кб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу









МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ


ОрёлГТУ



Кафедра

“Высшей математики”




Математическое моделирование и оптимизация в химической технологии.














Выполнил: Мартынов Е.Н.

Группа 21-ТМ

Проверил: Шмаркова Л.И.














Орёл 2000









































ОрелГТУ 2000г.


На химических заводах и комбинатах из сырья минерального, растительного или животного происхождения и различных промежуточных продуктов их переработки производят свыше миллиарда тонн в год химической продукции сотен тысяч наименований. При огромных различиях в масштабах производства (от десятков тонн до десятков миллионов тонн в год) и номенклатуре продукции все химические предприятия имеют общие принципы построения и общие направления развития и совершенствования. Любое химическое производство включает технологические стадии приема и подготовки сырья, химического превращения разделения реакционной массы, выделения целевого продукта, его очистки, отгрузки и отправки потребителю, а также очистки и переработки отходов и выбросов. Кроме сырья химические производства в значительных количествах потребляют пар воду, электроэнергию.

Эффективность химического производснва определяется экономическими показателями, и ее повышение достигается различными методами, одним из которых является метод математического моделирования.

Важнейшими характеристиками работы промышленного химического реактора являются удельная производимость (количество целевого продукта, образующегося в единицу времени в единице объема реактора) и селективность (доля превращенного сырья, использованного на образование целевого продукта). Для достижения наилучших экономических результатов необходимо добиваться возможно более высоких значений этих показателей. Для этого необходимо выбрать соответствующие условия протекания процесса с использованием его математической модели, который основан на использовании законов природы, лежащих в основе химических и физических процессов, протекающих в реакторе и других аппаратах различных технологических стадий. К ним относятся уравнения химической кинетики и термодинамики, описывающие скорости образования основных и побочных продуктов реакции и состав реакционной массы как функцию температуры, давления, начальных концентраций реагентов и степени их конверсии, уравнения гидродинамических, тепловых и массообменных процессов, сопровождающих реакцию или протекающую в отдельных аппаратах. Эти уравнения используют затем для построения функции себестоимости или дохода связывающие эти критерии с параметрами процесса.

Рассмотрим на конкретном примере решение проблемы оптимизации химико- технологического процесса с использованием простейших моделей.

В качестве примера решим задачу подбора параметров процесса для обеспечения максимальной производительности.

Предположим что производство продукта Bобразующегося по реакции А

В.функционирует с 40-х годов по старой технологии. Согласно производственному регламенту, реакция проводится в периодическом реакторе, в который загружается раствор исходного реагента А с начальной концентрацией СА,0 = 1моль/л. В количестве V=100л. реакционная масса термостатируется с помощью теплообменных устройств реактора (рубашка змеевик) в течение времени t= 3ч. За это время часть исходного реагента А превращается в продукт реакции В. При этом степень конверсии Х исходного реагента А в В:


(1)


где СА и СВ – концентрации А и В (моль/л) в реакторе в момент времени t=3ч.

При достижение заданной конверсии реакционная масса охлаждается, продукт реакции В отделяется, а не превращенный исходный реагент А попадает в отходы производства. Суммарное время загрузки и выгрузки реакционной массы составляет t0=1 ч.

Для таких регламентных показателей загрузки реагента А для проведения одной операции составляет nА,0 =V .СА,0=100 моль, а количество образовавшегося за время реакции продукта nB= nA,0.X=100 . 0,75=75 моль. Отсюда часовая производительность П установки, выраженная в молях продукта В, полученного в единицу времени :


моль/ч, или

18,75 . 24 = 450 моль/л . ч

Для решения поставленной задачи максимальной производительности проведем исследования кинетики реакции АВ. Находим, что ее скорость описывается кинетическим уравнением второго порядка:


 моль/л . ч (2)

с константой скорости k = 1 л/моль. ч. Уравнение (2) представляет собой в данном случае математическую модель описанного выше периодического реактора. Воспользуемся этой моделью для определения степени конверсии Х и времени t, обеспечивающих максимальную производительность установки. Очевидно, что такое время существует, поскольку при малом времени реакции t, несмотря на высокую скорость реакции (СА близко к СА,0), общая производительность установки мала из – за большой доли непроизводительных затрат времени t0. К тому же при большом времени реакции t доля непроизводительных затрат снизится и скорость реакции из – за малой концентрации СА к концу реакции (см. ур. 2).

Для определения оптимальных значений Х и t выразим через СА через Х (САА,0( 1 - Х )), подставим в уравнение (2)


и проинтегрируем

или


Подставив приведенные выше значения k и CA,0 в последнее уравнение, получим


(3)


Запишем теперь уравнение для расчета производительности установки. Для этого количество молей продукта В, производимых за одну операцию,

nB=VCB=VCA,0=100X

разделим на время операции t+t0 :


моль/ч.


Используя соотношение (3) получим


П=100Х( 1 – Х)

Теперь легко найти оптимальное значение Х для обеспечения максимального значения П. Для этого продиференцируем П по Х и приравняем производную нулю:


Отсюда оптимальное значение Х=0.5, а максимальное значение производительности, согласно (5), П = 25 моль/ч. или 25*24 = 600 моль/сут, что на 33,3 % выше регламентного показателя.

В целом на производстве основная доля затрат приходится на сырье (70%) и энергию ( до 40%). Снижение их расхода на еденицу продукции дает наибольший экономический эффект. Кардинальный путь снижения этих затрат состоит в использовании новых технологий, нодополнительного снижения затрат на производстве достигают оптимизацией процессов на всех технологическх стадиях.



































1. Темкин О.Н. Промышленный катализ и экологические безопасные технологии // Cоросовский Образовательный Журнал. 1997. №3. С. 42-50.


2. Швец В.Ф. Совершенствование химических производств // Cоросовский Образовательный Журнал. 1997. №6. С. 49-55.


3. Неймарк Ю.И. Простые математические модели и их роль в постижении мира // Cоросовский Образовательный Журнал. 1997. №3. С. 139-143.




9



© Рефератбанк, 2002 - 2017