Вход

Исследование способов повышения эффективности работы гусеничного движителя

Реферат по технологиям
Дата добавления: 23 января 2002
Язык реферата: Русский
Word, rtf, 8.9 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу

17







ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ


АВТОТРАКТОРНЫЙ ФАКУЛЬТЕТ



Магистерская диссертация


наименование темы

Исследование способов повышения эффективности

работы гусеничного движителя_________________



Автор работы ____________________ Шаров М.И.

подпись, дата фамилия, инициалы

Специальность 551402 Тракторы_________________

номер, наименование

Руководитель

магистерской

программы __________________ Победин А.В.

подпись, дата фамилия, инициалы


Руководитель работы __________________ Ляшенко М.В.

подпись, дата фамилия, инициалы























Волгоград, 2000




Реферат

Магистерская диссертация выполнена на 78 страницах машинописного текста и включает 12 рисунков, 2 таблицы и список литературы из 27 наименований.

Ключевые слова: эффективность, принцип работы, гусеничный движитель, ведущая звездочка, навесоспособность, плавность хода, почвосбережение, внутреннее подрессоривание, упругий элемент, машинное моделирование.

Работа посвящена исследованию некоторых аспектов эффективности работы гусеничного движителя трактора. В ней была поднята проблема обеспечения требований к характеристикам почвосбережения, экономичности, экологичности, плавности хода гусеничных машин, условий труда оператора на рабочем месте.

Согласно поставленной задаче было проведено исследование возможных конструкций гусеничного тягово-транспортного средства, отвечающего выставленным требованиям, предложена конструкция гусеничного движителя с ведущим колесом, опущенным на грунт, и конструкция ведущей звёздочки с внутренним подрессориванием.

Произведена оценка предложенной конструкции с точки зрения кинематики и кинетостатики. Сделан вывод о кинематической и кинетостатической реализуемости данного механизма. Также произведен расчет упругих элементов колеса на изгиб, и расчет координат точек шарниров упругих элементов, как однозначно задающих положение колеса в пространстве.

На основе произведенных вычислений, на ПЭВМ была реализована электронная модель колеса, что позволило произвести анализ изменения величины крутящего момента за один цикл. Также проведена оценка навесоспособности, угловой жесткости и распределения масс новой конструкции. Сделан вывод о конкурентоспособности данной модели и ряде преимуществ по сравнению с серийным трактором ВТ–100.


Содержание

1. Введение 6

2. Аналитический обзор и состояние вопроса 10

2.1 Анализ литературных источников 10

2.2 Патентное исследование 23

2.2.1 АС № 821229 «Упругое колесо транспортного средства со ступицей и обводом» 23

2.2.2 АС № 933481 «Металлоэластичное колесо транспортного средства» 25

2.2.3 АС № 160092 «Опорный каток гусеничных машин» 27

2.2.4 Патент США № 5125443 «Пружинно подвешенное колесное устройство» 28

2.2.5 Достоинства и недостатки рассмотренных конструкций 33

3. Анализ работы объекта исследования 35

3.1 Требования, предъявляемые к конструкции 35

3.2 Описание конструкции и принципа работы ведущего колеса с внутренним подрессориванием 36

3.3 Кинематический расчет исследуемой конструкции 40

3.3.1 Определение точек кривой траектории движения конца упругого элемента 40

3.3.2 Определение радиуса ведущего колеса по трём точкам 43

3.3.3 Определение координат шарниров упругих элементов колеса в любой момент времени 47

4. Физическая осуществимость кинематической модели ведущего колеса с внутренним подрессориванием 51

4.1 Кинетостатический анализ работы ведущего колеса с внутренним подрессориванием. 51

4.1.1 Расчетная схема 51

4.1.2 Определение неизвестных реакций в шарнирах упругого элемента 52

4.2 Расчет на изгиб пластинчатых упругих элементов, расположенных в плоскости, перпендикулярной оси ступицы 54

5. Анализ результатов проведённых исследований 60

5.1 Программная эмуляция работы ведущего колеса с внутренним подрессориванием на поверхности с неровностями почвы 60

5.2 Расчет навесоспособности трактора с ведущим колесом с внутренним подрессориванием 64

5.3 Расчет угловой жесткости трактора с ведущим колесом с внутренним подрессориванием 68

6. Заключение 73

Список использованной литературы 76


1. Введение

Сравнительный анализ и сопоставление колесных и гусеничных машин при эксплуатации их в тяжелых дорожных, а особенно во внедорожных, условиях показывает преимущество последних по таким важнейшим показателям, как проходимость, производительность, манёвренность, тягово-сцепные качества, удобство и надежность работы. Многоприводные автомобили и автопоезда даже при наличии четырех-пяти ведущих мостов не могут обеспечить в условиях бездорожья такую же реализацию тяговых качеств, как и гусеничные машины. При этом сложность и громоздкость активного привода к колесам ликвидирует такое важное достоинство автомобиля, как простота конструкций. Следовательно, необходимость в разработке новых и модификации старых конструкций тягово-транспортных средств с приводом от гусеничного движителя была и остаётся высокой. По-прежнему, эффективная работа целых отраслей народного хозяйства зависит от прогресса в разработках конструкторов гусеничных машин.

Машины с гусеничным приводом очень разнообразны по конструкции и назначению. Это промышленные и сельскохозяйственные тракторы, снегоболотоходные транспортеры, специальные тягачи, различные установки на гусеничном ходу, используемые для монтажа производственного или технологического оборудования, трубоукладчики на строительстве нефте- и газопроводов и т.д. Гусеничный движитель является одним из важнейших механизмов, определяющих тяговые качества, производительность, экономичность и надежность всех этих машин. Поэтому совершенствование конструкции движителя, выбор оптимальных параметров, рациональное сочетание характеристик отдельных его элементов, разработка более совершенной схемы привода и формы обвода гусениц представляют ответственный этап при создании или модернизации гусеничных машин.

Следует также учитывать, что в результате воздействия ходовых систем тракторов, в почве образуются уплотненные зоны, вызывая неравномерное распределение влаги и отрицательно влияющие на урожайности по всей ширине воздействия. Исследования влияния уплотнения почвы тяжелыми мобильными агрегатами на урожай сельскохозяйственных культур, проведённые в нашей стране, а также в США, Швеции, Японии показали, что урожай снижается на 20–35%. При этом большое влияние на уплотнение почвы оказывает среднее и максимальное удельные давления. Согласно данным [16] для большинства почв допустимое давление составляет 39–49 кПа, предельное — 98–147 кПа, а фактически же, оказываемое мобильными агрегатами давление достигает 294–420 кПа.

Создание долговечного, экономичного, экологичного гусеничного движителя является сложной научно-технической проблемой. Сложность ее обуславливается тяжелым режимом работы движителя, подвергающегося абразивному воздействию грунта, высокими динамическими нагрузками, нестабильностью геометрии и кинематики обвода, особенно при движении по пересеченной местности.

Стремление сократить до минимума все механические потери в движителе, иными словами обеспечить максимальный к. п. д., увеличить экономичность машины, повысить почвосбережение еще в большей степени усугубляет трудности решения этой задачи, так как неизбежным следствием повышения энергоемкости транспортного средства, уменьшения его массы является увеличение динамической нагруженности гусеничного движителя и уменьшение его надежности.

Существенное усовершенствование гусеничного движителя возможно только на базе серьезных теоретических и экспериментальных исследований. Теория гусеничного движителя была в основном разработана профессорами А. С. Антоновым, Е. Д. Львовым, М. К. Кристи, Л. В. Сергеевым, А. О. Никитиным, В. Ф. Платоновым и др. Она в достаточном объеме освещает вопросы кинематики нерастяжимого обвода, качения опорного катка по ровному основанию, потери мощности в движителе и взаимодействия опорной ветви с грунтом.

Применение новых конструктивных решений при создании современных ходовых систем гусеничных машин, а также необходимость улучшения их эксплуатационных показателей не могли не вызвать постановки и решения отдельных вопросов теории гусеничного движителя, разработки новых методов расчета его узлов и деталей. Это позволило развивать данную теорию в новых направлениях, позволяющих более полно и глубоко изучить динамическое нагружение гусеничного движителя, обосновать пути снижения его нагруженности и повышения надёжности.

Как часть данного направления можно рассматривать и текущую работу, основными задачами которой являлись изучение путей увеличения к. п. д. гусеничного движителя, экономичности и экологичности его работы путем введения новых конструктивных элементов, в частности ведущего колеса с внутренним подрессориванием, служащего одновременно ведущим и опорным элементом. Это позволяет при несущественном увеличении длины гусеничного обода увеличить базу, навесоспособность и устойчивость трактора от опрокидывания назад, а также значительно улучшить условия труда тракториста на рабочем месте путем улучшения характеристик плавности хода и шумности.


2. Аналитический обзор и состояние вопроса

2.1 Анализ литературных источников

Интерес к проблемам общей экологичности машины, и почвосбережения в частности, экономичности разрабатываемых конструкций, увеличения КПД никогда не ослабевал, а новые задачи, поставленные «Федеральной программой машиностроения для АПК России», утвержденной постановлением Правительства РФ от 19 апреля 1994 года №738 [1], увеличили круг затрагиваемых вопросов.

В аспекте создания новых типов гусеничных движителей, а также модернизации старых, с целью увеличения КПД движителя следует в первую очередь обратиться к работам [8, 9, 10]. В них широко рассматриваются как теоретические вопросы работы гусеничного движителя, так и практические задачи по решению проблем потери мощности в движителе, долговечности гусеничного движителя, динамики взаимодействия гусениц с направляющим и опорными катками, ведущим колесом, устойчивости обвода и пр.

Труды [8, 10, 14] показывают, что в последнее время использование гусеничных тракторов в сельском хозяйстве стало больше, чем колесных. В таблице 2.1 приведены результаты исследования уплотнений почвы после проходов тракторов с различными типами движителей. Из таблицы следует, что средине и максимальные давления на почву гусеничных сельскохозяйственных тракторов находятся с пределах, соответственно, 0,04–0,06 МПа и 0,154–0,240 МПа [16].

Машина, воздействующая на почву

Кратность воздействия при сплошном укатывании

Плотность почвы  103 кг/м3

в слое почвы, см

Показатель воздействия, кН/м

0–10

10–20

20–40

Без уплотнения

0

1,31

1,45

1,5

ДТ–75

1

3

1,35

1,40

1,48

1,49

1,52

1,52

112

165

Т–150К

1

3

1,38

1,41

1,48

1,49

1,54

1,54

184

270

К–700

1

3

1,38

1,44

1,52

1,52

1,56

1,56

240

354

Таким образом, гусеничные тракторы обладают меньшим показателем воздействия и удельным давлением, большей проходимостью, позволяя на одну-две недели раньше начинать полевые работы, что даёт возможность получать более высокие урожаи не только за счёт меньшего уплотнения почвы, но и за счёт повышения качества технологического процесса.

Влияние воздействия движителей сельскохозяйственных тракторов на изменение плотности дерновоподзолистой среднесуглинистой почвы [17]

Таблица 2.1

Эксперименты НАТИ [16, 23–26]показали, что при изменении давления на почву весьма значительно снижается прирост удельного сопротивления вспашке. По следу трактора Т–150 он в 4,34 раза меньше, чем по следу трактора К–150К, при этом производительность труда в 1,18–1,4 раза больше, а погектарный расход топлива снизился, соответственно, в 1,38–1,07 раза. В среднем, по всем видам работ, производительность МТА с допустимым давлением на почву возрастает в 1,27 раза, а расход топлива снижается в 1,22 раза (экономия до 4000 кг топлива в год только одной машиной).

Благодаря этому и другим, описанным ниже, преимуществам, в современном зарубежном тракторостроении также наметилась тенденция использования гусеничных тракторов в сельском хозяйстве.

Стоит также упомянуть и о затронутом в различных источниках, как зарубежных, так и отечественных, анализе развития современных технологий, указывающем на постоянно возникающий дисбаланс масс в конструкциях создаваемых машин и о путях его устранения.

Как видно из таблицы 2.2, основные массы трактора — это двигатель и навесные устройства. Исторически сложилось так, что при компоновка узлов машины эти две основные массы уравновешивают друг друга. Однако, современная наука не стоит на месте. Начинают применяться новые материалы, новые технологии, новые энергоносители, что в контексте развития двигателе- и тракторостроения приводит к парадоксу, из которого, казалось бы, нет выхода.

Распределение веса (кгс) гусеничных тракторов [11]

Таблица 2.2


Составляющая

Трактор

Среднее значение, %

Т-38М

Т-74

ДТ-75М

Т-150

Т-4

Т-108


Трактор без водителя

4100

5880

6570

7000

8140

11510

105

Балласт

130

200

Топливо

100

180

210

270

260

195

Возимые ЗИП

20

25

25

30

30

80

Вода системы охлаждения

30

45

60

45

50

75

Конструктивный вес

3950

5500

6100

6655

7750

11160

100

Двигатель в сборе с муфтой сцепления и воздухоочистителем

750

760

1050

1130

1290

2400

17,0

Радиаторы (водяной и масляный

70

150

180

90

105

110

1,6

Коробка передач

160

250

340

660

300

350

5,0

Задний мост и редуктор ВОМ

410

480

450

430

600

1010

8,5

Конечные передачи со звёздочками (две)

570

370

540

340

610

960

8,5

Рычаги управления и приборы

40

60

85

100

95

90

1,1

Рама

750

750

640

7,9

Полурама

190

310

370


Тележки с опорными катками

390

1410

2010

14,2

Каретки эластичной подвески

760

720

420


Поддерживающие ролики

30

90

110

130

120

180

1,5

Гусеницы

530

860

880

980

1500

2120

16,7

Кабина с оборудованием

110

130

130

340

260

315

3,0

Сидение, пол, крылья

80

100

100

105

120

105

1,5

Облицовка и капот

60

70

70

85

110

125

1,2

Прицепное приспособление

50

50

60

120

260

1,2

Механизм навески с цилиндром

230

270

270

320

350

5,0

Бак гидросистемы с маслом

30

65

65

60

60

1,4

Распределитель и арматура

20

25

30

25

30


Топливный бак

40

50

50

50

70

165

0,9

Напомню, что положение центра тяжести, согласно [11], определяется координатами: горизонтальной — от оси ведущего колеса , вертикальной от поверхности почвы и поперечным смещением по горизонтали от плоскости симметрии .

Координаты центра тяжести для вновь проектируемого трактора находят графически или графоаналитически. На боковой проекции трактора выделяют контуры основных узлов и механизмов и наносят векторы их веса, приложенные к центрам тяжести. При графическом методе построением веревочных многоугольников находят вертикальную и горизонтальную равнодействующие суммы весов, точка пересечения которых определит положение центра тяжести. При графоаналитическом методе находят координаты центра тяжести каждого узла или механизма , , а затем общие координаты центра тяжести:

,

(2.1)

где Gуз — вес узла.

Координаты центра тяжести трактора с навешенным орудием в транспортном положении можно определить по формуле

,

(2.2)

где Q — вес орудия;

ан — проекция на плоскость пути расстояния центра тяжести орудия от оси ведущих (задних) колес (звездочек); берётся со знаком «минус», если направлена в сторону, противоположную центру тяжести трактора;

hн — высота центра тяжести орудия в транспортном положении.

Итак, очевидно, что на величину горизонтальной координаты центра тяжести трактора наибольшее влияние оказывают двигатель (энергетическая установка) и навешенное орудие, как элементы с наибольшим весом на самых больших расстояниях от предполагаемого центра масс. Однако теперь следует обратиться к истории развития тракторостроения.

Одной из насущных задач в тракторостроении всегда был вопрос повышения энергоемкости машинно-транспортного агрегата. Достигается это, в первую очередь, модернизацией двигателя путём применения новых материалов и технологий. Это приводит, с одной стороны, к снижению веса ДВС, а с другой к увеличению числа и/или массы навешенных на трактор орудий. И первый, и второй из перечисленных факторов приводит к уменьшению величины горизонтальной координаты центра тяжести (его смещению по направлению к навеске трактора). Получается некий замкнутый круг: снижение веса двигателя трактора и увеличение его мощности — увеличение числа и/или массы навешиваемых орудий — увеличение мощности двигателя и снижение его веса и т.д. Это приводит к попыткам конструкторов вынести максимально вперёд массу двигателя с целью увеличить его плечо (в качестве примера можно привести модельный ряд тракторов ВГТЗ серий ДТ-175 и ВТ-100) и/или разместить спереди трактора балластные грузы.

Альтернативным вариантом решения этой задачи может стать увеличение продольной базы трактора путем опускания ведущего колеса на грунт [20, 21]. Это позволить снизить массу балластных грузов, что приводит к экономии материалов, снижению общего веса конструкции, и, следовательно, снижению воздействия МТА на почву, решению ряда вопросов, связанных с эксплуатацией трактора без навешенных на него орудий. Однако данное решение также имеет ряд недостатков. В первую очередь это ведёт к увеличению момента сопротивления повороту. А самое главное, на ведущее колесо теперь будут действовать ничем не компенсируемые силы, которые могут привести к выходу из строя конечной передачи.

Еще одним решением проблемы может стать кардинальное изменение схемы работы движителя и, как следствие, полная перекомпоновка узлов трактора. Имеется в виду так называемый трактор с «треугольным обводом», примером которого может послужить опытный образец, разработанный в стенах НАТИ в начале 90-х годов (см рисунок 2.1). Однако, обладая рядом безусловных преимуществ, среди которых, наиболее рациональное, среди всех типов компоновок, расположение центра масс, самая большая навесоспособность, данная модель обладает и рядом недостатков, наиболее существенные из которых, это незамкнутый силовой контур машины и увеличенный износ гусениц ввиду добавления второго изгиба в форме обвода.

Рисунок 2.1 Гусеничный трактор НАТИ с центральным расположением ведущего колеса



Стоит также упомянуть и о различных видах и типах гусениц как средстве увеличения эффективности работы гусеничного движителя.

На рисунке 2.2 показано влияние сопротивления качению, буксования и удельной силы тяги на КПД ходовой системы [13]. Из графиков видно, что чем меньше сопротивление качению и буксование, тем выше коэффициент полезного действия. Увеличивается КПД и при росте тяговой нагрузки. Это указывает на важность обеспечения высоких тяговых качеств трактора за счет его ходовой системы и объясняет преимущества гусеничной ходовой системы перед колесной при работе на мягких (легкодеформируемых) почвах с орудиями, требующими реализации высоких тяговых усилий. На тяговые качества трактора определяющее влияние оказывают конструктивные параметры ходовой системы.

Для работы с минимальными потерями мощности важное значение имеет натяжение гусеницы. Недостаточное натяжение приводит к ухудшению распределения давления на почву и увеличивает ее деформацию, способствует спаданию гусеницы с опорных катков, а чрезмерное — к росту потерь на трение и ускорению износа шарниров.

Рисунок 2.2 Влияние сопротивления качению, буксования и удельной силы тяги на КПД ходовой системы


При работе с большими тяговыми усилиями опрокидывающий момент от тягового сопротивления орудий приводит к перераспределению нагрузок на опорные катки: передние — разгружаются, задние — догружаются. Поэтому у большинства гусеничных тракторов, работающих с задними орудиями, центр тяжести смещен вперед от середины опорной поверхности или имеются передние грузы, которые должны быть установлены при тяжелых условиях работы, так как наибольший КПД наблюдается при равномерном распределении нагрузок по опорным каткам.

Из конструктивных параметров ходовой системы наибольшее влияние оказывают на тяговые качества длина опорной поверхности гусениц, число опорных катков и шаг гусеничной цепи. Увеличение этих параметров способствует повышению коэффициента полезного действия ходовой системы благодаря снижению сопротивления качению и буксования. Этим объясняются конструктивные особенности болотоходных тракторов и увеличенный шаг гусениц на промышленных тракторах.

Тракторы Т-70С, ДТ-75БВ и Т-130Б могут работать с гусеницами различной ширины. Необходимо иметь в виду, что увеличение ширины гусеницы способствует повышению тяговых качеств только на слабых, легкодеформируемых почвах (болота, снежная целина, пески). На почвах и грунтах средней и высокой плотности увеличение ширины гусеницы эффекта не дает, так как приводит к росту массы ходовой системы, а, следовательно, и к повышению потерь на трение, ухудшает заглубление почвозацепов и увеличивает буксование. В результате КПД снижается.

При неизменной длине опорной поверхности увеличение числа опорных катков способствует росту КПД ходовой системы на легкодеформируемых почвах и грунтах. На плотных почвах и грунтах лучшие показатели имеет ходовая система с меньшим числом опорных катков большего диаметра, что объясняется уменьшением сопротивления качению и лучшим заглублением почвозацепов под опорными катками.

Из всех типов подвесок наиболее высокие тяговые качества обеспечивает упругая индивидуальная система подрессоривания опорных катков благодаря более равномерному распределению давления на почву.

Лучшими тяговыми качествами обладают составные гусеницы с уплотнениями и смазкой шарниров, а также гусеницы с резинометаллическими шарнирами. Это объясняется постоянством шага гусеницы, обеспечивающим минимум потерь в зацеплении с ведущим колесом, пониженным трением в шарнирах, а также более равномерным распределением давления на почву при наличии упругих моментов в шарнире.

Оптимальная форма почвозацепа звена гусениц — расчлененный почвозацеп с увеличивающимся к краям углом между упорной кромкой и осью шарнира.

2.2 Патентное исследование

Современная конструкторская мысль уделяет большое внимание проблеме усовершенствования конструкции всего гусеничного движителя в целом и ведущего колеса в частности. Были исследованы патенты с глубиной выборки сорок лет для патентов России/СССР и тридцать лет для патентов США (согласно [2]). Поиск показал, что конструкции ведущего колеса подобные проектируемому существуют. Однако, как уже указывалось выше, на практике такие колёса получили распространение только на промышленных тракторах. Кратко рассмотрим некоторые из существующих патентов [3–7] и проанализируем их достоинства и недостатки.

2.2.1 АС № 821229 «Упругое колесо транспортного средства со ступицей и обводом»

Колесо изображено на рисунке 2.3.

Описание колеса в статике:

Упругое колесо состоит из ступицы 1, бандажа 2, разделенных между собой расположенными по окружности пакетами 3, каждый из которых размешен в цилиндрическом гнезде и состоит из стальных разрезных гильз переменной толщины, удерживаемых от поворота вокруг своей оси стопорящей планкой 4, размещенной на торцовых прорезях гильз и жестко связанной со ступицей, при этом от выпадения пакеты удерживаются также кольцевой планкой 5, жестко соединенной с бандажом винтами 6 и образующей радиальный зазор со ступицей 1, а внутренняя гильза каждого пакета 3 имеет резиновую вставку 7.

Рисунок 2.3 АС № 821229 «Упругое колесо транспортного средства со ступицей и обводом»



Регулирование жесткости колеса производят следующим образом.

Для регулирования жесткости колеса отвинчивают винты 6, снимают планку 5, удаляют из торцовых канавок пакетов 3 планки 4 и поворачивают пакет 3 или каждую гильзу пакета 3 на определенный угол.

Так как грузоподъемность транспортного средства может быть различной, упругое колесо с регулируемой жесткостью позволяет привести ее к оптимальной и таким образом снизить динамические нагрузки на узлы транспортного средства.

Цель изобретения - регулирование жесткости колеса.

Цель достигается тем, что упругие элементы выполнены в виде расположенных в цилиндрических гнездах пакетов разрезных металлических гильз переменной толщины, имеющих на торцах радиальные канавки, вмещающие стопорный элемент. При этом колесо может быть снабжено резиновыми вставками, расположенными во внутренних гильзах пакетов.

2.2.2 АС № 933481 «Металлоэластичное колесо транспортного средства»

Колесо изображено на рисунке 2.4

Металлоэластичное колесо состоит из ступицы 1, гибкого обода 2, включающего траки 3 с резиновыми грунтозацепами, соединенные шарнирами 4, балансиры 5, установленные на внутренней стороне соседних траков 3 одним концом шарнирно, а другим скользящими по внутренней стороне обода. На каждом балансире 5 в середине его установлен шарнир 6; соединенный с шарниром 7 на ступице через спицы 8, которые выполнены в виде двух соединенных между собой шарниром 9 рычагов. Причем каждый шарнир 9 соединен с шарниром 6 и шарниром 7 соседних спиц с помощью упругих элементов (пружин) 10.

Рисунок 2.4 АС № 933481 «Металлоэластичное колесо транспортного средства»



Для обеспечения поперечной устойчивости колеса спицы с упругими элементами расположены в два ряда симметрично относительно вертикальной оси.

Колесо, работает следующим образом.

Крутящий момент независимо от направления движения передается от ступицы 1 через рычаги спиц 8, элементы 10 и балансиры 5 к ободу 2 и вследствие взаимодействия последнего с почвой реализуется в тяговое усилие колеса. Благодаря тому, что угол между рычагами, образующими спицу 8, отличен от 180, элементы 10 в нижней части колеса под воздействием вертикальной нагрузки сжаты. Передача крутящего момента осуществляется также за счет сжатия этих элементов, причем независимо от направления движения колеса. Таким образом, из-за того, что элементы 10 в нижней части колеса всегда сжаты, а крутящий момент от ступицы 1 к ободу 2 передается через них, работа колеса идентична как при движении вперед, так и назад.

Плавность хода колеса и допустимое давление на грунт обеспечиваются регулированием упругих качеств колеса за счет подбора элементов 10 определенной жесткости и необходимого комплекта спиц 8 с упругими элементами. Вертикальную нагрузку воспринимают все элементы 10, сжимаясь или растягиваясь при этом в зависимости от места расположения их.

Целью изобретения является повышение надежности в работе колеса. Для этого обод выполнен из шарнирно соединенных друг с другом траков, каждая пара которых связана балансиром, а каждый шарнир, соединяющий рычаги спицы, связан с шарниром, соединяющим рычаг со ступицей, и шарниром, связывающим, рычаг с балансиром соседних спиц упругими элементами.

2.2.3 АС № 160092 «Опорный каток гусеничных машин»

Колесо изображено на рисунке 2.5.

Опорный каток гусеничных машин, включающий обод и ступицу, между которыми размешен кольцевой резиновый амортизатор и крепежные детали, отличающийся тем, что, с целью улучшения характеристики амортизатора, он выполнен из нескольких колец, одни из которых посажены свободно, воспринимают радиальные нагрузки, а другие посажены с предварительным натягом, работают на сдвиг и смятие, воспринимают радиальные и осевые нагрузки и фиксируют обод на ступице. Колесо содержит обод 1 с коническими поверхностями 2 и 3 , сопрягающиеся с коническими поверхностями 4 и 5 ступицы 6.

Рисунок 2.5 АС № 160092 «Опорный каток гусеничных машин»


2.2.4 Патент США № 5125443 «Пружинно подвешенное колесное устройство»

Колесо изображено на рисунке 2.6.

Описание колеса в статике:

Упомянутым в патенте изобретением снабдили колесо, состоящее из круглого остова или обода, соединённого множеством пружин с центральной ступицей. Круглый обод лежит в плоскости вращения, ось которой преимущественно перпендикулярна данной плоскости и проходит через середину плоскости вращения, образуемой ободом. Более того, механизм колеса включает в себя дугообразные элементы пружин, которые расходятся лучами по спирали в радиальном направлении от ступицы до обода и обеспечивают наружную жесткость обода колеса с целью повышения эластичности и добавления большей ударопрочности.

Также в конструкции колеса предусмотрены два набора спиралевидных пружин, по одному с каждой стороны от плоскости вращения, передвигающихся, в основном, конически от каждой из сторон ступицы до обода колеса.

Еще в реализованном изобретении каждая из пружин в каждом из наборов имеет сопряженную пружину в другом наборе так, что первая пара сопрягается со второй парой в точке расхождения по длине до точки прикрепления к ступице.

Далее конструкция отличается тем, что спиральные элементы в одном блоке не выровнены относительно друг друга, соседа или оппозитного элемента, так чтобы не организовать заранее отобранные шаблоны.

Спиральные элементы в одной группе растягиваются по спирали по часовой стрелке от центра к периферии, тогда как пружины другой группы растягиваются против часовой стрелки, если смотреть на колесо сбоку от плоскости вращения.

Также в конструкции ось колеса разъединена между ступицами, т.е. колесо закреплено двумя вставками, соединяющими с обеих сторон вилку и ступицу. Промежуток между ступицами остаётся, то есть отсутствует соединение между оппозитными ступицами.

Рисунок 2.6 Патент США № 5125443 «Пружинно подвешенное колесное устройство»


Выбор специфической конфигурации или модели двойных спиралевидных деталей в изобретенном колесном устройстве позволяет, по крайней мере, добиться искомого распределения усилий или достичь требуемой в ряде задач поворачиваемости и сцепления. Таким образом, горные велосипедные шины могут нуждаться в соприкосновении обоих сторон спиралевидных элементов для передачи наибольшей гибкости и улучшенной упругости, поскольку в значительной степени идентичность или согласованность блоков спиральных шестерен может придать большую поворачиваемость единичному колесу лопастного типа роликовых коньков, т.е. так называемым роликовым лезвиям.

Цель изобретения. Данный патент США можно считать логическим завершением целой цепочки изобретений (патенты США №№ 813423, 1141078, 515456, 2869608, 1253975), постепенно развивающих и улучшающих данный конструкционный узел машины путем введения и модернизации связей различного типа в колесе с внутренним подрессориванием. Например, патент США №813423 Хилла показывает когтеобразное удерживающее устройство для прикрепления колеса к оси. Конструкция Хилла включает в себя прочные спицы из металлической проволоки, которые соединяют каждую ступицу с ободом колеса, что распределяет усилия так же, как и ось, располагающаяся, как правило, между этими ступицами. Патент США №1141078 Шеффела улучшает конструкцию Хилла путём исключения удерживающих устройств, крепящих ступицу к оси. Шеффел также предлагает ввести прочные спицы из проволоки и единый вал колеса. Патент США №515456 Вуда направлен, в основном, на конструкцию ступицы колеса, и показывает дугообразные спицы, лежащие вне плоскости вращения колеса, и перемещающиеся по дуге от ступицы к ободу колеса. Патент США №2869608 Чамберлена и др. защищает конструкцию пружинного колеса под автомобильные шины, имеющую плоские ленточные пружины (вместо спиц), которые внутренне расходятся от каждой ступицы до обода колеса, при этом полностью находясь вне плоскости вращения обода. Наконец, патент США №1253975 Ховарда и др. защищает конструкцию с множеством некомпланарных спиц, прикрепленных к множеству независимых ободов. Данный же патент США №5125443, в свою очередь, содержит колесо открытого типа, имеющее круглый обод, расположенный в плоскости вращения колеса, две оппозитные ступицы, размещённые по обе стороны плоскости вращения колеса на его оси вращения, саму ось, пересекающую плоскость вращения в центре круга, очерченного ободом, и множественные пружины, расположенные противоположно друг другу, причем каждая из этих пружин расходится от центра к периферии по радиальной и спиралевидной траектории от точек прикрепления к ободу до точек прикрепления к ступицам, в связи с чем колесо наделяется способностью лучше противостоять радиальным и/или боковым деформациям, обеспечивая притом хорошую самоцентровку и возврат в начальное положение, когда обод колеса перемещается из нормального положения в плоскости вращения или по оси вращения.

2.2.5 Достоинства и недостатки рассмотренных конструкций

Все вышеописанные изобретения обладают рядом недостатков, не позволяющих применить эти колёса как ведущие на гусеничных тракторах.

Первый недостаток всех изобретений — они проектировались не для гусеничных тракторов, следовательно, абсолютно не учитывают специфику работы данного тапа машин. Более того, каждое из приведенных выше изобретений, несмотря на оригинальные идеи, не подходят конструктору гусеничных машин по ряду причин. Так у первого изобретения значительная металлоёмкость и небольшая величина хода обода, что значительно снижает плавность хода и удорожает конструкцию. То же можно сказать и о третьем из списка изобретении, которое идеально подходит для применения в опорных катках гусеничного движителя. Второе из описанных изобретений имеет и малую металлоемкость, и хорошую плавность хода, но всё же оно недостаточно удовлетворяет требованием жесткости в боковом направлении для данного типа ведущих колес. Последний из описанных патентов и авторских свидетельств хотя и обладает достаточно малой металлоемкостью и хорошей плавностью хода, что не маловажно, тем не менее, не содержит возможность обратимости движения (за исключением последней из предложенных конструкций), имеет большую степень детализации, что снижает его эксплуатационные качества, а главное, идеология данного изобретения подразумевает наличие гибкого обода колеса, что недопустимо в гусеничных движителях из-за необходимости обеспечивания адекватного натяжения гусеницы и обеспечения её несоскальзывания.

Несмотря на все описанные выше недостатки, большинство оригинальных идей, примененных в данных изобретениях требуют отдельного более пристального изучения при синтезе новой конструкции опущенного на грунт ведущего колеса с внутренним подрессориванием гусеничного трактора.


3. Анализ работы объекта исследования

3.1 Требования, предъявляемые к конструкции

Ведущее колесо наматывает гусеничную цепь, обеспечивая движение трактора. К ведущему колесу предъявляются следующие требования:

надежное зацепление с гусеницей (независимо от её износа) как в ведущем, так и в тормозном режиме. Это требование соблюдается путем правильного выбора геометрии зацепления. Оно легко выполняется в гусеницах, шаг которых в процессе эксплуатации не изменяется или изменяется незначительно [8];

высокая износостойкость зубьев. Обеспечивается геометрией зацепления, подбором износостойких материалов для зубчатых венцов и технологическими мероприятиями по повышению их поверхностной твёрдости;

самоочистка от пыли, грязи и снега.

В данной работе рассматривается возможность создания на базе гусеничного трактора (прототип — трактор ВТ–100, выпускаемый ВГТЗ) варианта сельскохозяйственного трактора общего назначения с подрессоренным ведущим колесом.

Ведущее колесо опускается на землю, тем самым оно выполняет две роли: ведущую и опорную [15, 16].

Опуская ведущее колесо на грунт, получаем следующие преимущества:

увеличение КПД;

уменьшение удельного давления на почву;

уменьшение буксования;

увеличение опорной длины гусеницы;

почвосбережение.

Однако простое увеличение продольной базы трактора путём опускания ведущего колеса на грунт ведёт к увеличению момента сопротивления повороту. А самое главное, на ведущее колесо теперь будут действовать ничем не компенсируемые силы, которые приведут к выходу из строя конечной передачи. Поэтому ведущее колесо необходимо подрессоривать.

3.2 Описание конструкции и принципа работы ведущего колеса с внутренним подрессориванием

Предложенное в данной работе ведущее колесо состоит из (см. рисунок 3.1):

вала конечной передачи;

ведущей ступицы;

нескольких ведомых ступиц;

зубчатого венца;

системы подрессоривания;

дополнительной системы подрессоривания;

втулок-упоров.