Вход

Альдегиды и кетоны: общие сведения и способы получения

Контрольная работа* по химии
Дата добавления: 18 апреля 2009
Язык контрольной: Русский
Word, rtf, 1.1 Мб
Контрольную можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше

Введение


Альдегиды и кетоны объединяют общим названием карбонилсодержащие или карбонильные соединения. В кетонах к карбонильной группе присоединены два углеводородных остатка, а в альдегидах один из них водород. В формальдегиде к карбонильной группе присоединены два атома водорода.


кетоны альдегиды формальдегид


При назывании альдегидная группа может рассматриваться и как заместитель:


бензолкарб - циклогексан - 2-Нафталин-

альдегид карбальдегид карбальдегид


4-метаноилбензойная кислота 4-этаноилбензолсульфокислота

(п-формилбензойная кислота) (п-ацетилбензолсульфокислота)


За исключением газообразного формальдегида, низшие альдегиды и кетоны представляют собой подвижные жидкости. Температуры кипения альдегидов и кетонов ниже температур кипения спиртов с тем же числом атомов углерода, так как карбонильные соединения сами по себе водородных связей не образуют. Низшие альдегиды и кетоны растворимы в воде, видимо, за счет образования водородных связей:



Способы получения.

Многие методы получения альдегидов и кетонов сходны, но существует и ряд особых способов, пригодных для синтеза только альдегидов или только кетонов.

Окисление углеводородов.

Простейший альдегид – формальдегид – можно получать окислением метана кислородом воздуха в присутствии медно-цинкового катализатора:


(1)


Окислением толуола может быть получен бензальдегид. Наиболее перспективно окисление кислородом воздуха в присутствии катализатора (например, V2O5):


(2)


Ацетофенон производится в промышленности каталитическим окислением этилбензола кислородом воздуха:



(3)


В качестве окислителя иногда используют серную кислоту. Так, обработка адамантана концентрированной серной кислотой при 75 оС в течение 5 ч с выходом 50-60% дает адамантанон:


(4)

адамантан фдамантанон


Окисление этилена в присутствии хлоридов палладия (II) и меди (II) приводит к образованию ацетальдегида (Вакер-процесс):


(5)


При окислении этилена кислородом в присутствии триоксида молибдена и фосфорной кислоты сначала образуется окись этилена, но она немедленно изомеризуется в уксусный альдегид. Для уменьшения времени контакта, и предотвращения дальнейшего окисления ацетальдегида одновременно пропускают водяной пар.


(6)



Окисление спиртов

Окисление спиртов обсуждалось в разделе 12.2.5. Окислением метанола получают формальдегид


(7)


Важный растворитель метилэтилкетон получают в промышленности окислением 2-бутанола.


(8)


В лабораторных же условиях в качестве окислителя используется бихромат калия или натрия в кислой среде. Окислителем в этом случае является хромовая кислота. Например, реакция


(9)


проходит по следующему механизму:


(М 1)


Альдегиды могут быть получены из первичных спиртов путем их окисления пиридинийхлорхроматом (ПХХ):



Упр.1. Напишите реакцию получения гептаналя из 1-гептанола.

Упр.2. Напишите реакции, лежащие в основе промышленных методов получения (а) формальдегида, (б) ацетальдегида, (в) бензальдегида, (г) ацетона, (д) ацетофенона?

Упр.3. Предложите схему получения формальдегида из СО и Н2.

Гидроформилирование алкенов (Оксосинтез)

При температуре от 30 до 250 оС и давлении 100-400 атм в присутствии дикобальтоктакарбонила алкены присоединяют водород и монооксид углерода с образованием альдегидов. Обычно получается смесь изомеров:


(10)


Пиролиз солей карбоновых кислот.

При нагревании бариевых или кальциевых солей карбоновых кислот образуются кетоны. Именно так впервые был получен ацетон:


(11)


Из дикарбоновых кислот > С6 и выше получают циклические кетоны:



(12)


Упр.4. Напишите реакции получения (а) ацетона, (б) диэтилкетона и

(в) циклопентанона пиролизом бариевых солей соответствующих кислот.

Реакция Гаттермана-Коха.

Арены формилируют смесью СО и HCl в присутствии хлоридов алюминия и меди (I):


(13)

п-толуиловый альдегид


Эта реакция представляет собой вариант ацилирования, так как смесь CO и HCl можно представить себе как неустойчивый хлорангидрид муравьиной кислоты:



Роль CuCl состоит в первоначальном образовании комплекса с СО, что повышает его концентрацию в реакционной смеси.

Фенолы и простые эфиры, а также нитробензол и все соединения с электро-ноакцепторными заместителями в реакцию Гаттермана-Коха не вступают.

Упр.5. Напишите схемы получения по реакции Фриделя-Крафтса:

(а) пропиофенона; (б) бутирофенона; (в) бензофенона.

Упр.6. Напишите схемы получения ацетофенона: (а) окислением углеводо-рода, (б) окислением спирта, (в) гидролизом дигалогенуглеводорода, (г) ацилиро-ванием бензола.

Восстановление производных карбоновых кислот

Альдегиды можно получать восстановлением производных карбоновых кислот. Хлорангидриды кислот могут быть превращены в альдегиды восстановлением водородом в присутствии палладия, нанесенного на сульфат бария. Катализатор дезактивируют добавками хинолина с серой или тиомочевиной.



В современных методах в качестве восстановителей используют различные комплексные гидриды металлов. Одним из лучших восстановителей служит трис (трет-бутокси) гидроалюминат лития, образующийся при взаимодействии алюмогидрида лития с трет-бутиловым спиртом.

Эфиры и нитрилы карбоновых кислот восстанавливаются в альдегиды с помощью диизобутилалюминийгидрида.



LiAlH(t-BuО) 3


Трис(трет-бутокси) гидроалюминат лития Диизобутилалюминийгидрид




(14)


Эфиры и нитрилы карбоновых кислот восстанавливаются в альдегиды с помощью диизобутилалюминийгидрида.


(DIBAL-H)

(15)

Литийдиалкилкупратный метод получения кетонов


При действии литийдиалкилкупрата на хлорангидриды карбоновых кислот в эфире при охлаждении образуются кетоны:




(16)


Упр.7. Напишите реакции, приводящие к следующим превращениям:

(а) бензол ® бромбензол ® фенилмагнийбромид ® бензиловый спирт ® бензальдегид; (б) толуол ® бензойная кислота ® бензоилхлорид ® бензальдегид;

(в) этилбромид ® 1-бутин ® 2-бутанон; (г) 2-бутин ® 2-бутанон; (д) 1-фенилэтанол ® ацетофенон. (е) бензоилхлорид ® ацетофенон; (ж) бензойная кислота ® ацетофенон; (з) бензилбромид ® С6Н5СН2СN ® 1-фенил-2-бутанон;

(и) С6Н5СН2СN ® 2-фенилэтаналь: (з) метилкапронат ® гексаналью

В результате взаимодействия альдегидов и кетонов с углеродными нуклеофила-ми образуются новые связи С?С. Такими нуклеофилами служат реактивы Гриньяра, литийорганические соединения, ацетилениды и циановодородная кислота.



А. Присоединение реактивов Гриньяра.

Особая ценность реактивов Гриньяра заключается в их способности создавать новые связи С?С. Разница в электроотрицательности между углеродом и магнием (2,5 - 1,2 = 1,3), обусловливает полярность связи между этими атомами и наличие частичного отрицательного заряда на атоме углерода и частичного положительно-го заряда на атоме магния. В реакциях реактивы Гриньяра ведут себя как карбанионы. Карбанионы являются хорошими нуклеофилами и легко присоединяются к карбонильной группе. Магнийорганические соединения вступают в реакции нуклеофильного присоединения к альдегидам и кетонам с образованием алкоксидов, гидролизующихся в спирты:

Присоединение к формальдегиду приводит к образованию первичных спиртов.



(17)


Другие альдегиды дают вторичные спирты:


(18)


1-Циклогексилэтанол

Из кетонов получают третичные спирты:


2-Фенил-2-пропанол


(19)


Б. Присоединение литийорганических соединений.

Литийорганические соединения более реакционноспособны, чем магнийлрганичес-кие и обеспечивают больший выход целевого продукта. Онако с ними можно работать только в атмосфере инертного газа. Ниже приводится пример использования литийорганического соединения для получения стерически затрудненного третичного спирта.


(20)

Фениллитий 3,3-Диметил-2-бутанон 3,3-Диметил-2-феил-2-бутанол


В. Присоединение ацетиленидов металлов

Этинид-анион также является нуклеофилом. Образующиеся при этом спирты содержат две функциональные группы, каждая из которых может быть далее модифицирована.


(21)

1-этинилциклогексанол


Гидратация полученного алкинола приводит к образованию a-гидроксикетона, а гидроборирование-окисление - b-гидроксиальдегида.


(22)

1-ацетилциклогексанол

(a-гидроксикетон)



(23)

2-(1-гидроксициклогексил) этаналь

(b-гидроксикетон)



© Рефератбанк, 2002 - 2024