ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.
Пусть задана система векторов а 1 , а 2 , а 3 ,…,а л (1) одной размерности.
Определение: система векторов (1) называется линейно-независимой, если равенство a 1 а 1 + a 2 а 2 +…+ a л а л =0 (2) выполняется лишь в том случае, когда все числа a 1 , a 2 ,…, a л =0 и ? R
Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном a i ? 0 (i=1,…,k)
Свойства
Если система векторов содержит нулевой вектор, то она линейно зависима
Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.
Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.
Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.
Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.
Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.
Теорема: Если заданы два вектора a и b, причем а ? 0 и эти векторы коллинеарны, то найдется такое действительное число g , что b= g a.
Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.
Доказательство: достаточность. Т.к. векторы коллинеарны, то b= g a. Будем считать, что а,b ? 0 (если нет, то система линейно-зависима по 1 свойству). 1b- g a=0. Т.к. коэфф. При b ? 0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. a а+ b b=0, a ? 0. а= -b/ a *b. а и b коллинеарны по определению умножения вектора на число.
Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.
Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т.к. векторы линейно-зависимы, то a а+ b b+ g c=0, g ? 0. с= - a / g *а - b / g *b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.
БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.
1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.
В множестве векторов на прямой базис состоит из одного ненулевого вектора.
В качестве базиса множества векторов на плоскости можно взять произвольную пару.
В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.
2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.
Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях.
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.
(а,b)=|a| |b| cos u, u<90>90, пр-е отриц.
Свойства:
(а,b)= (b,а)
( a а,b)= a (а,b)
(а+b,с)= (а,с)+ (b,с)
(а,а)=|a| 2 – скал.квадрат.
Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0.
Определение: вектор называется нормированным, если его скал.кв.равен 1.
Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.
Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.
Найдем формулу угла между векторами по определению скалярного произведения. cos u=a,b/|a||b|=x 1 x 2 +y 1 y 2 +z 1 z 2 /sqrt(x 1 2 +y 1 2 +z 1 2 )*sqrt(x 2 2 +y 2 2 +z 2 2 )
ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.
Определение: векторным произведением двух векторов a и b обозначаемым [a,b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку.
Свойства:
[a,b]= - [b,a]
[ a а,b]= a [а,b]
[a+b,c]=[a,c]+[b,c]
[a,a]=0
Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.
Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.
Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго.
Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. e a =a/|a|
РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.
1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр.
Ах+By+C=0 (1), где A, B одновр.не равны нулю.
Теорема: n(A,B) ортоганален прямой заданной ур-ем (1).
Доказательство: подставим коорд. т.М 0 в ур-е (1) и получим Ах 0 +By 0 +C=0 (1’). Вычтем (1)-(1’) получим А(х-х 0 )+B(y-y 0 )=0, n(A,B), М 0 М(х-х 0 , y-y 0 ). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M 0 M ортоганальны. Т.о. n ортоганлен прямой. Вектор n(A,B) называется нормальным вектором прямой.
Замечание: пусть ур-я А 1 х+B 1 y+C 1 =0 и А 2 х+B 2 y+C 2 =0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А 1 =t*А 2 и т.д.
Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным.
1. С=0, Ах+By=0 – проходит ч/з (0,0)
2. С=0, А=0, By=0, значит у=0
3. С=0, B=0, Ах=0, значит х=0
4. А=0, By+C=0, паралл. ОХ
5. B=0, Ах+C=0, паралл. OY
x/a+y/b=1.
Геом.смысл: прямая отсекает на осях координат отрезки а и b
x-x 1 /e=y-y 1 /m
Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M 1 М(х-х 1 ; y-y 1 )
x-x 1 /x 2 -x 1 =y-y 1 /y 2 -y 1
Пусть на прямой даны две точки М 1 (x 1 ;y 1 ) и М 2 (x 2 ;y 2 ). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x 2 -x 1 ; y 2 -y 1 )
y=kb+b.
u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u
Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x 1 /e/e=y-y 1 /m/e. y-y 1 =k(x-x 1 ) при y 1 -kx 1 =b, y=kx+b
xcos q +ysin q -P=0
q - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.
Ах+By+C=0
xcos q +ysin q -P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos 2 q =(A*t) 2
Sin 2 q =(B*t) 2
-p=C*t
cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.
7. Система: x=et+x 1 и y=mt+y 1
НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.
1. xcos q +ysin q -P=0
q - угол между вектором ОР и положительным напр. оси ОХ.
Задача: записать ур-е прямой , если изветны Р и q
Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos q , sin q ). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cos q x+sin q y. Приравняем правые части.
Задача: прямая задана общим ур-ем. Перейти к норм. виду.
Ах+By+C=0
xcos q +ysin q -P=0
т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.
Cos 2 q =(A*t) 2
Sin 2 q =(B*t) 2
-p=C*t
cos 2 q +sin 2 q =t 2 (A 2 +B 2 ), t 2 =1/A 2 +B 2 , t= ± sqrt(1/ A 2 +B 2 ). Sign t= - sign C
Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.
Аtх+Bty+Ct=0, t-нормирующий множитель.
2. Обозначим d – расстояние от точки до прямой, а ч/з б – отклонение точки от прямой. б=d, если нач.коорд. и точка по разные стороны; = - d, если нач.коорд. и точка по одну сторону.
Теорема: Пусть задано нормальное уравнение прямой xcos q +ysin q -P=0 и М 1 (x 1 ;y 1 ), тогда отклонение точки М 1 = x 1 cos q +y 1 sin q -P=0
Задача: найти расстояние от точки М 0 (x 0 ;y 0 ) до прямой Ах+By+C=0. Т.к. d=|б|, то формула расстояний принимает вид d=| x 0 cos q +y 0 sin q -P|. d=|Ах 0 +By 0 +C|/sqrt(A 2 +B 2 )
ГИПЕРБОЛА.
Определение: ГМТ на плоскости модуль разности расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная
Каноническое уравнение:
Будем
считать, что фокусы гиперболы находятся
на ОХ на одинаковом расстоянии от начала
координат. |F 1
F
2
|=2c,
М – произвольная точка гиперболы. r 1
,
r2 – расстояния от М до фокусов;
,
x
2
c
2
-2a
2
xc+a
2
=a
2
(x
2
-2xc+c
2
+y
2
)
x
2
(c
2
-a
2
)-a
2
y
2
=a
2
(c
2
-a
2
)
c
2
-a
2
=b
2
x
2
b
2
-a
2
y
2
=a
2
b
2
-
каноническое ур-е гиперболы
ПАРАБОЛА.
Определение:
ГМТ
на плоскости расстояние от которых до
фиксированной точки на плоскости,
называемой фокусом, равно расстоянию
до фиксированной прямой этой плоскости
называемой директрисой.
Каноническое
уравнение:
Пусть
фокус параболы находится на оси ОХ, а
директриса расположение перпендикулярно
оси ОХ, причем они находятся на одинаковом
расстоянии от начала координат.
|DF|=p,
М – произвольная точка параболы; К –
точка на директрисе; МF=r; MK=d;
r=sqrt((x-p/2)
2
+y
2
);
d=p/2+x
Приравниваем
и получаем:
y
2
=2px
- каноническое уравнение параболы
ЭКСЦЕНТРИСИТЕТ
И ДИРЕКТРИСА ЭЛЛИПСА И ГИПЕРБОЛЫ.
1.
Определение:
эксцентриситет
– величина равная отношению с к а.
е=с/а
е
эллипсв <1>c)
е
гиперболы >1 (т.к. с>a)
Определение:
окружность
– эллипс у которого а=b, с=0, е=0.
Выразим
эксцентриситеты через а и b:
е
эллипса является мерой его “вытянутости”
е
гиперболы характеризует угол раствора
между асимптотами
|r
2
-r
1
|=2a;
a