Вход

Химическая термодинамика

Курсовая работа* по химии
Дата добавления: 30 марта 2002
Язык курсовой: Русский
Word, rtf, 1.8 Мб
Курсовую можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше

1






Московский Авиационный Институт

(Технический Университет)


Кафедра физической химии














Курсовая работа

на тему:


"Химическая термодинамика"








Выполнил: Павлюк Д.В


Проверила: Селиванова С.И.



Содержание:

I. Теоретическая часть

  1. Введение……………………………………………………………..3

  2. Законы термохимии…………………………………………………3

  3. Элементы термодинамики………………………………………….4

  4. Первое начало термодинамики…………………………………….5

  5. Элементы второго начала термодинамики………………………..9

  6. Энтропия…………………………………………………………….11

  1. Экспериментальная часть………………………………………16

  2. Расчетная часть…………………………………………………17

Список используемой литературы……………………………………19





В результате химической реакции выделяется или поглощается энергия, так как реакция сопровождается перестройкой энергети­ческих уровней атомов или молекул веществ, участвующих в ней, и веществ, образующихся в ходе реакции.

Реакции, при которых наблюдается выделение энергии, назы­ваются экзотермическими (Q>0).

Реакции, идущие с поглощением энергии, называются эндотер­мическими (Q<0). Выделение или поглощение энергии в резуль­тате процесса зависит от соотношения количеств энергии, затра­ченных на разрыв или возбуждение химических связей первона­чально взятых веществ, и энергии, выделяющейся в результате об­разования новых химических связей в продуктах реакции.

Величина энергии отдельной химической связи очень мала. Её удобно выражать в электронвольтах на атом. Поскольку обычно в реакциях участвуют относительно большие количества веществ, то общие количества энергии получаются также большие. Так, элементарный расчет показывает:

на 1 атом: 1эВ=1,6?10-19Кл?1В = 1,6. 10-19 Дж,

на 1 моль: 1,6?10-19?6,02?1023=9,65?104 Дж/моль = 96,5 кДж/моль.

Энергия, образующаяся в результате химических реакций, мо­жет выделяться в разных формах, но, конечно, в эквивалентных количествах. Так, например, фотохимические процессы при фото­графии развиваются при поглощении квантов лучистой энергии галидами серебра и, наоборот, можно построить источник когерент­ного излучения—лазер, работающий на энергии химических ре­акций.

Затрачивая электрическую энергию, можно выделять нужные вещества из растворов или расплавов путем электролиза, с другой стороны, можно получить энергию за счет химических реакций, протекающих в гальванических элементах или аккумуляторах.

Чаще всего в, результате химических реакций выделяется или поглощается тепловая энергия. Поэтому раздел химии, изучающий энергию химических реакций, исторически стал называться термо­химией, а изменение энергии называется тепловым эффектом химической реакции и измеряется в килоджоулях на моль образовав­шегося или сгоревшего вещества. Так как в зависимости от усло­вий, в которых протекает химическая реакция, возможно выделение или поглощение работы расширения газов (p=const), то раз­личают тепловой эффект реакции при (p=const) Qp и тепловой эффект реакции при (v=const) Qv, хотя разница между ними обычно невелика.


ЗАКОНЫ ТЕРМОХИМИИ


Первый закон термохимии (Лавуазье и Лаплас, 1780—1784):

тепловой эффект образования данного соединения в точности равен, но обратен по знаку тепловому эффекту его разложения.

Из закона Лавуазье—Лапласа следует невозможность постро­ить вечный двигатель I рода, использующий энергию химических реакций.

Второй закон термохимии (Г. И. Гесс, 1840):

тепло­вой эффект химической реакции не зависит от характера и после­довательности отдельных ее стадий и определяется только началь­ными и конечными продуктами реакции и их физическим состоя­нием (при p=const или при v=const).

Г. И. Гесс первый принял во внимание физическое состояние реагирующих веществ, так как теплоты изменения агрегатных со­стояний веществ накладываются на тепловой эффект реакции, уве­личивая или уменьшая его.

Утверждение закона Гесса о том, что тепловой эффект процес­са не зависит от его отдельных стадий и их последовательности, дает возможность рассчитывать тепловые эффекты реакций для случаев, когда их определить экспериментально или очень трудно, или вообще невозможно.

Применение закона Гесса чрезвычайно расширило возможности термохимии, позволяя производить точные расчеты тепловых эф­фектов образования целого ряда веществ, опытные данные по ко­торым получить было трудно.

Закон Гесса в наши дни применяют главным образом для рас­чета термодинамических функций—энтальпий, которые сейчас используются для термохимических расчетов. Термохимия, истори­чески сложившаяся раньше термодинамики, в настоящее время претерпела некоторые изменения и стала разделом химической термодинамики.


ЭЛЕМЕНТЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ


Химическая термодинамика изучает изменения энергии в результа­те процессов в материальных системах, приводящих к изменению состава и свойств физических тел, из которых построена данная система.

Термодинамической системой называется комплекс взаимодей­ствующих между собой физических тел, мысленно обособленный от окружающей среды.

Системы бывают изолированные, в которых энергообмен и массообмен с окружающей средой отсутствуют, и замкнутые, в которых возможен энергообмен с окружающей средой, но не возможен обмен веществом. Незамкнутые системы рассматриваются в термодинамике необра­тимых процессов.

Системы можно разделить на гомогенные или однородные, не имеющие физичес­ких границ раздела между отдельными час­тями, так как во всех частях системы свойства одинаковы(например, ненасыщен­ный раствор), и системы гетерогенные, или неоднородные, разделяющиеся на отдельные части физическими границами раздела, на которых свойства системы резко изменяют­ся. Часть гетерогенной системы, ограничен­ная физическими границами раздела, называется фазой. Например, насыщенный раствор, соприкасающий­ся с растворяемым веществом, представляет собой гетерогенную систему.

Состояние системы определяется физическими параметрами; в простейшем случае идеального газа — это давление и температура, так как v =f(p. Т).

Изменение параметров системы вызывает процесс. Если процесс заключается в последовательном изменении параметров, приводя­щих в конечном итоге систему в исходное состояние, то такой про­цесс называется циклом.

Химическая термодинамика, так же как и общая термодинами­ка, основана главным образом на двух законах (началах).


ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ


Первое начало термодинамики, окончательно сформулированное Джоулем в середине XIXв., представляет собой закон сохранения энергии. Для замкнутых систем, обменивающихся энергией с окру­жающей средой, уравнение первого закона термодинамики имеет вид:

(1)

где Q — энергия, сообщенная системе; ?U— приращение внут­ренней энергии системы; А — работа, совершенная системой.

Энергия, сообщенная системе (Q), может быть тепловой или другой формой энергии, так как первый закон термодинамики справедлив для любых процессов. Если система поглощает энергию, то Q принимает положительное значение, т. с. знак Q обратен знаку теплового эффекта реакции:

Q =  Q (2)

Внутренняя энергия системы (U) включает все виды энергии, заключенные в веществах, составляющих систему, кроме энергии, созданной гравитационными, электрическими или магнитными ноля­ми, а также кроме кинетической энергии системы в целом (для движущейся системы). Таким образом, U  сумма всех видов теп­ловой энергии движения элементарных частиц, энергии связи и энергии агрегатных состояний. Это сложная термодинамическая функция, полностью определяемая состоянием системы или соответствующим сочетанием параметров (р и Т). Если система погло­щает энергию, то запас внутренней энергии растет (?U>0).

Если работа совершается системой, то А — положительная ве­личина; если же работа совершается над системой, то А отрица­тельна (например, сжатие газа).

Как Q, так и А в уравнении (1) характеризуют процесс и от состояний системы (начального и конечного) зависят неодно­значно, так как из начального состояния подойти к конечному состоянию можно разными путями и с различным поглощением энергии и различной величиной работы. Поэтому уравнение (1) мы не можем записать в дифференциальной форме, так как только одно приращение ?U однозначно определяется параметрами со­стояния р, v, Т.

Если известен закон изменения параметров в данном процессе, то уравнение первого закона термодинамики можно записать в диф­ференциальной форме и исследовать математически. В области при­менения химических реакций наиболее часто встречаются процессы, протекающие при постоянном объеме (изохорический) и при по­стоянном давлении (изобарический).

  1. Изохорический процесс: v = const. В этом случае параметры р и Т связаны между собой уравнением Гей-Люссака, р/Т = const. Уравнение (1) записывается в дифференциальной форме:

dQ=dU+dA. (3)

Но если объем постоянен, значит работа расширения или сжатия газа совершаться не может: dA==pdv=0. Следовательно, dQ = - dU;

приравниваем частные производные по температуре:



или


dU = CvdT, (4)


где Сv — теплоемкость при постоянном объеме. Уравнение (4) по­зволяет вычислять изменение внутренней энергии системы при изменении температуры, если не происходит каких-либо изменений агрегатного или полиморфного состояния.

Как известно, при химической реакции внутренняя энергия из­меняется: если энергия выделяется, то это соответствует умень­шению запаса внутренней энергии, и наоборот. Поэтому тепловой эффект и изменение внутренний энергии имеют обратные знаки:

U = -Qv. (5)


2. Изобарический процесс: р = const. В этом случае по закону Гей-Люссака v/T= const. Кроме того, из уравнения (3) не выпадают отдельные члены, так как при постоянном давлении расширение и сжатие газа возможно, как и нагревание и охлажде­ние. В этом случае dQ=dU+pdv. После интегрирования в пределах 1—2 получим:

Выражение в скобках (U + pv) представляет собой термодина­мическую функцию, которую назовем энтальпией Н:

H=U+pv. (6)

Энтальпия это энергосодержание системы, включающее внут­реннюю энергию и работу. Тогда

(7)

Если система поглощает энергию Q1-2, то ?Н больше нуля, и если в этой системе происходит химическая реакция, то она будет эндотермической:

(8)

Так как в дальнейшем мы будем использовать понятие разности энтальпий химической реакции, то необходимо помнить соотно­шение:


Экзотермические реакции

Эндотермические реакции


?H<0; Qp>0

?H>0; Qp<0>


Разность энтальпий химической реакций обратно по знаку теп­ловому эффекту реакции при постоянном давлении. Для вычисления энтальпии исходим из соображений, что Q = ?H; приравниваем частные производные по температуре:


(9)


или d(?Н)=CpdТ, где Ср—теплоемкость при постоянном давле­нии. При расчете ?Н следует учитывать не только изменение энер­госодержания системы в зависимости от температуры, но и из­менение агрегатных и полиморфных состояний, при котором происходит поглощение энергии при постоянной температуре:

(10)

Таким образом, энтальпия — сложная математическая функция, оп­ределяющая энергию, необходимую для приведения системы в дан­ное состояние, и учитывающая изменение внутренней энергии и совершаемую работу.


На рисунке приведены кривые зависимости энтальпии от темпе­ратуры для газов, используемых как плазмообразователи в плазмотронах.

Для исследования процессов, происходящих в материальных си­стемах, мы пользуемся не абсолютными значениями энтальпий, а их изменением (разностью) между начальным и конечным состояниями системы. Разности энтальпий мы можем измерять с любой степенью точности, отсчитывая энтальпии не от абсолютного

нуля, а, от любого, но всегда одного и того же уровня. За такой уровень приняты стандартные условия: Т=298,15 К, р=1,013?105Па.

Кроме того, для термохимических расчетов приняты следующие два условия:

  1. Разность энтальпий простых веществ (?Н0) в состоянии, устойчивом при стандартных условиях, принимается равной нулю. Например:, но (так как для образования атомар­ного водорода при стандартных условиях надо затратить энергию диссоциации, равную 217,9 кДж/моль).

  2. Разность энтальпий сложного вещества обратна по знаку и равна тепловому эффекту при постоянном давлении () реак­ции его образования из простых веществ в состоянии, устойчивой при стандартных условиях, т.е. энтальпии образования. Например:  241,8 кДж/моль; + 90,37 кДж/моль.

В настоящее время стандартные разности энтальпий (?Н0) и их зависимости от температуры () можно найти в справочной литературе для очень большого числа неорганиче­ских и органических соединений.

Термохимические расчеты с использованием табличных данных значительно упростились. Рассмотрим пример расчета разности энтальпий химической реакции в общем виде для уравнения

aA+bB=cC+dD

где А, В, С, D — символы реагирующих веществ: а, Ь, с, d — стехиометрические коэффициенты.

Исходные вещества (аА+bВ) соответствуют начальному состоя­нию системы, и сумма их энтальпий вычитается, так как они в ре­зультате процесса исчезают, конечные продукты (cC+dD), состав­ляющие конечную систему, появляются в процессе, и их энтальпии входят со знаком плюс. Если данное вещество в уравнение хими­ческой реакции входит с коэффициентом, отличным от единицы, то при суммировании энтальпий эти коэффициенты надо взять как множители.

Во избежание возможных ошибок надо суммирование энтальпий производить непосредственно под уравнением химической реакции


aA+bB=cC+dD

Подставляя значения энтальпий из справочной литературы, нахо­дим реакции.

Чтобы получить разность энтальпий реакций для более высоких температур, чем стандартные, используют зависимость разности энтальпий от температуры и учитывают при этом изменения энер­гии, потребной для нагрева данных веществ и для изменения их фазовых состояний:

(11)

Для многих веществ эти функции рассчитаны и приведены в справочных таблицах (?НT  Н0).

Если абсолютное значение разности энтальпий реакций доста­точно велико (300—400 кДж), то в первом приближении темпера­турной зависимостью можно пренебречь, так как теплоемкости из­меряются в Дж/(моль?К), а разности энтальпий—в кДж/моль, т.е. на 3 порядка выше.

Для органических соединений в справочных таблицах часто при­водится разность энтальпий горения этих веществ, рассчитанная для случая образования жидкой воды, так как обычно определения производятся в калориметрических бомбах, охлаждаемых по окончании опыта до комнатной температуры.

Зная разность энтальпий сгорания, легко определить разность энтальпий образования органического вещества. Схема расчета приведена для общего случая горения органического вещества:

Отсюда


Атомы других элементов (Cl, N, S и т.д.), входящие в состав органической молекулы, при горении выделяются в молекулярном виде или в виде устойчивых оксидов (SO2, P2O5), так как горение происходит в атмосфере кислорода (3?105 Па).


ЭЛЕМЕНТЫ ВТОРОГО НАЧАЛА ТЕРМОДИНАМИКИ


Первое начало термодинамики — закон сохранения энергии — рас­сматривает уже свершившиеся процессы, но не указывает направление процесса химической реакции, ее возмож­ность и полноту протекания, а это представляет собой основную задачу при исследовании любого процесса, особенно высокотемпературного.

Так, например, водород и кислород, соединяясь со взрывом, при обычных температурах образуют воду, при высоких температу­рах реагируют обратимо, а при температуре выше 4000 К существование водяного пара практически невозможно. Таким образом, разность энтальпий реакции еще не определяет возможности ее протекания в данных конкретных физических условиях.

Изменение химической энергии зависит от условий, поэтому раз­витие химических реакций, как и всех остальных процессов, на­пример тепловых, определяется вторым началом термодинамики. Согласно второму началу термодинамики (сформулированному в окончательной форме Клаузиусом и Гельмгольцем в середине XIX в.) теплота может переходить в работу только при нали­чии разности температур и не целиком, а с определен­ным термическим коэффициентом полезного действия (?):

(12)

где A — работа, полученная за счет перехода теплоты от тела с вы­сокой температурой (Т1) к телу с низкой температурой (Т2); Q1 — теплота, взятая у нагретого тела с температурой Т1; Q2 — теплота, отданная холодному телу с температурой Т2.

Учитывая, что температура выражена в абсолютной шкале, мы видим, что КПД тепловых машин вообще невелик. Например, КПД теплоэлектроцентрали, работающей с перегревом пара до 673 К и с конденсатором при Т2 =323 К

или 52%

(И это без учета всех остальных потерь в рабочем цикле турбин и механических потерь!)

Таким образом, для любых процессов, протекающих под дей­ствием разности потенциалов (grad P), каковой для тепловых про­цессов является разность температур, для элект­рических — разность потенциалов, для механи­ческих — разность высот и т.д., общим является сравнительно низкий коэффициент полезного действия. Значение КПД обращается в единицу, если в уравнении (12) Т20, но абсолютный нуль недостижим. Следовательно, всю энергию нагретого тела при температуре Т1, в работу превратить нельзя.

Заряд q проходит разность потенциалов, со­вершая работу

A=q(U1-U2). (13)

Однако всю энергию он отдает только в том слу­чае, если U2?O.

Вода вращает турбину при перепаде уровней воды: верхний бьеф — нижний бьеф плотины:

(14)

Однако всю энергию положения (потенциальную) вода отдаст только в том случае, если h2 ? 0, т. е. вода будет падать до центра земли, что невозможно.

Таким образом, при совершении работы часть общей энергии системы остается неиспользованной.

При течении химических реакций энтальпия начальных продук­тов не может вся перейти в работу или теплоту, так как в конеч­ных продуктах реакции сумма энтальпий не равна нулю. Если гра­диент движущих сил (Т, U, h и т. д.) равен нулю, то и работа, со­вершающаяся в процессе, равна нулю, а система будет находиться в состоянии равновесия: при Т1=Т2 закончится теплообмен: элек­трический заряд не осуществляет работы, если U1 = U2 турбины не работают при спущенной плотине; химическая реакция будет достигать равновесия, когда количество полученных конечных про­дуктов равно количеству разложившихся конечных продуктов на первоначальные за единицу времени.

Исследуя выражение для КПД тепловой машины, Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией. В самом деле:

или

отсюда

или (15)

Таким образом, при проведении цикла в идеальной тепловой машине (цикл Карно) и получении механической работы отношение полученной теплоты к температуре нагретого источника равно та­кому же отношению для холодного источника. Так как Q является в уравнении (15) приращением энергии, то можно это отношение записать в дифференциальной форме для элементарных циклов:

суммируя изменения по всему циклу тепловой машины, можно за­писать

(16)

где dQ — приращение теплоты; Т — соответствующая температура;— интеграл по замкнутому контуру.

Подынтегральное выражение Клаузиус принял за приращение новой функции S — энтропии:

или (17)

Энтропия представляет собой функцию параметров состояния (р,v,Т) и может оценить направление процесса в системе, стре­мящейся к равновесию, так как для идеального или равновесного процесса ее изменение равно нулю: dS=0.

В самом деле, заменяя dQ на изменение внутренней энергии и работы dQ=dU+pdv, можно записать

(18)

Если U=const и v = const, то в идеальном процессе dS=0, что, по существу, определяет равновесие системы (обратимый процесс), и в этом случае энтропия стремится к максимальному значению:

S?Smax.

Приращение энтропии определяется развитием необратимых процессов, протекающих самопроизвольно, которые прекращаются только при достижении равновесия в системе.

Однако требование постоянства внутренней энергии системы ис­ключает возможность использования только одной этой функции для исследования химических реакций, при которых внутренняя энергия веществ, составляющих систему, неизбежно меняется.

Гиббс предложил другую термодинамическую функцию, иссле­дуя которую можно определить направление процессов в системе, стремящейся к равновесию при T=const и p=const:

G=HTS (19)

где G — энергия Гиббса (или термодинамический потенциал, как назвал эту функцию Гиббс); Н—энтальпия; S—энтропия; Т— абсолютная температура.

Опуская все математические исследования термодинамической функции G, можно считать, что функция G для системы, стремя­щейся к равновесию, убывает, при достижении равновесия она при­нимает минимальное значение (G?Gmin), а ее приращение обра­щается в нуль (?G=0).


ЭНТРОПИЯ


Наиболее информативной термодинамической функцией в уравне­нии (19) является энтропия S.

Значение энтропии легко определить только для состояния иде­ального газа. Используем для вычисления S уравнение (18), где dU — изменение внутренней энергии, равное для идеального газа СvdT т.е. теплоемкости при постоянном объеме, умноженной на приращение температуры: pdv — приращение работы, которое можно представить как, заменив р на RT/v. Отсюда

(20)

После интегрирования в пределах 0T получаем

(21)


рис. 2 Схема для расчета энтропии при самопроизвольном смешивании двух газов.

где ST — энтропия при температуре Т; S0 — энтропийная постоян­ная; Сv — теплоемкость при постоянном объеме; v — молярный объем.

Таким образом, энтропия моля идеального газа является функцией Т и р (так как молярный объем зависит от Т и р). Выражение (21) применимо лишь для чистого идеального газа, так как для смесей газов, даже при отсутствии между ними химических реакций, энтропия смеси будет возрастать за счет необратимых процессов диффузии, приводящей к распределению компонентов по всему объему газовой смеси. Рассмотрим процесс самопроизвольного смешения двух газов.

Пусть в двух частях объема, разделенного перегородкой r (рис. 2, а), находится n1 молей первого газа и n2 молей второго газа при р, Т=const.


Общая энтропия системы

(22)

где S1 и S2 — молярные энтропии первого и второго газов. Удалим перегородку r и дадим возможность газам образовать смесь, равномерно распределенную по всему объему (рис 2,б), где v —молярный объем газа при данных р и Т. На каждый моль компонентов смеси приходятся пропорциональ­ные части объема:

и

Подставляем значения этих объемов в уравнение (21) и получаем значения энтропии для одного моля компонента в смеси:

Общий запас энтропии в смеси газов тоже увеличился:

(23)

Приращение энтропии в газовой смеси зависит от соотношения чисел молей компонентов n1 и n2. Если положить, что n1 ? 0, то энтропия этого газа


но доля, вносимая этим компонентом в общий запас энтропии сис­темы, также стремится к нулю: . В то же время если n1? 0, то (n1+n2)/n2 стремится к 1, а тоже стремится к нулю. Следовательно, при исчезновении одного из компонентов газовой смеси энтропия другого компонента станет равна энтропии чистого газа:

.

Так как отношение (n1+n2)/n1 представляет собой величину, обратную молярной доле данного компонента

то в общем виде можно записать выражение энтропии моля газа в смеси следующим образом:

(24)

(25)

Полученное выражение определяет очень важное понятие, а имен­но—рассеяние вещества, так как если N ? 0, то энтропия стре­мится к ?.

В природе существуют так называемые рассеянные элементы, общее содержание которых, вообще говоря, не так мало, но они присутствуют в очень малых количествах в различных минералах, водах и т. д. Для того чтобы выделить эти элементы в свободном виде, их сначала надо концентрировать, а это трудно и требует очень большой затраты энергии. Так, например, морская вода содержит ничтожные количества золота, но так как воды в мировом океане очень много, то и золота в ней тоже огромное количество” Однако если золото выделять из морской воды известными метода­ми, то оно будет “дороже золота”.

Приращение энтропии при смещении газов — RlnNi можно использовать при рассмотрении любых разбавленных растворов. В растворах более концентрированных взаимодействие между моле­кулами растворенного вещества уменьшает их активность, и поэто­му в таких случаях вместо величин концентрации в уравнение под' ставляют величины “активности” а:

где а — активность; ? — коэффициент активности, стремящийся в разбавленных растворах к единице; Ni, — молярная доля. Энтро­пия реальных веществ, способных менять свое агрегатное или по­лиморфное состояние, определяется сложнее, так как для каждого состояния значение энтропии будет иное.

Изменение энтропии ?S при любом превращении вещества мож­но определить по уравнению

(26)


где ?Hпревращ— изменение энтальпии при превращении; Тпревращ — температура превращения.

Зависимость энтропии от температуры определяется из уравнения


(27)

где Ср — теплоемкость при постоянном давлении . Общая формула температурной зависимости с учетом возмож­ных агрегатных превращений будет


(28)

Для удобства расчетов и построения таблиц в справочниках приняты стандартные значения энтропии при Т =298,15 К и р = 1,013?105Па, т.е. значения при тех же условиях, что и в случае расчета энтальпий. Некоторые значения стандартных энтропии приведены в табл.1 .


Таблица 1. Значения стандартных энтропий S0 для некоторых веществ.


Вещество

S0

Вещество

S0

Вещество

S0

Вещество

S0

H2O (г)

188,74

H (г)

114,6

Cl2 (г)

223,0

CO2 (г)

213,6

H2O (ж)

69,96

H2 (г)

130,6

HCl (г)

186,7

FeO (кр)

58,79

H2O (кр)

39,33

O2 (г)

205,03

CO (г)

197,4

? – Fe (кр)

25,15


Как видно из табл. 1, для воды наблюдается рост энтропии при изменении ее агрегатных состояний от кристаллов к газу.

При переходе вещества от упорядоченного состояния (кристалл) в жидкое или газообразное состояние энтропия моля вещества растет.

Больцман, развивая статистические идеи в термодинамике, впервые показал сущность энтропии для идеальных газов, определив ее пропорциональность термодинамической вероятности Wi

Термодинамическая вероятность Wi рассматривается как число возможных способов построения данной системы или число микросостояний, с помощью которых осуществляется данное макросостояние вещества. Естественно, упорядочена система, например кристалл, тем меньше возможных микросостояний (отклонений от равновесного состояния) и тем меньше энтропия.



II. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.


ОПРЕДЕЛЕНИЕ ТЕПЛОВОГО ЭФФЕКТА НЕЙТРАЛИЗАЦИИ СЕРНОЙ КИСЛОТЫ


Цель работы - определение теплового эффекта реакции нейтра­лизации и проверка закона Гесса.

Нейтрализация 1 г-экв любой сильной кислоты сильным основа­нием в достаточно разбавленном растворе сопровождается почти одинаковым экзотермическим тепловым эффектом, отвечающим одному и тому же процессу  образованию 1 моля жидкой воды из гидратированных ионов и по уравнению:

нейтр =  55.9 кДж/г-экв


Оборудование


1. Внутренний стакан калориметра(1).

2. Калориметр (2).

3. Мешалка(3).

4. Термометр(4).

5. Бюретка(5).


Рассчитываем тепловой эффект реакции нейтрализации одного г/экв кис­лоты (?Ннейтр) no формуле.

(Здесь Q  коли­чество теплоты, выделившейся в калориметре; n  количество г/экв кислоты в 200 мл 0,4н раствора). Значение Q вычисляем во формуле где Сi  соответ­-

ственно массы стакана, мешалки, кислоты и щелочи; Сст  удельная теплоемкость стакана (стекла), равная 0,69 кДж/кг?К;

СМ - удельная теплоемкость мешалки (стали),равная 0,42 кДж/кг?К; Ск , Сщ  удельные теплоемкости кислоты и щелочи (4.2 кДж/?К).


РАСЧЕТЫ.


Масса внешнего стакана калориметра

Масса мешалки

Температура, С?

Начальная темп., Т1

Конечная темп., Т2

Разность , ?Т=Т21

132 гр.

23.2 гр.

22.8

27.6

4.8

132 гр.

23.2 гр.

22.9

25

26

2.1

3.1


Уравнение реакции:


Нормальность  это количество эквивалентов в 1 л.

49гр.  1н.

X гр.  2н.

X = 98 г./экв.

1.

Q = (0.69 ? 132 + 0.42 ? 23.2 + 4.2 ? 200 + 4.2 ? 40) ? 4.8 = 5322.35

?Ннейтр =  Q / N = 5322.35 /98 = -54.3 кДж

Ошибка опыта:

2.

Q1 = (0.69 ? 132 + 0.42 ? 23.2 + 4.2 ? 200 + 4.2 ? 40) ?2.1=2328.5

Q2 = (0.69 ? 132 + 0.42 ? 23.2 + 4.2 ? 200 + 4.2 ? 40) ?3.1=3437.35

Qобщ= Q1+ Q2

?Ннейтр =  Qобщ / N = 5765.85 /98 = -58.8 кДж

  1. РАСЧЕТНАЯ ЧАСТЬ.


Вариант № 5

№ 1


Ответ: ?Н =  204.8 кДж.


№ 2


Дано:

;

;

;



Что бы пошла реакция прямо, необходимо, что бы ?G <0> :

?H-T?S<0>

T> ?H/?S

T>2.8


Ответ: реакция пойдет при Т>298+2.8 Т> 300.8 К


№3


?H=?Q



Ответ: 39745 Дж




№4

Дано:

N2  1 моль

H2  3 моль


А)

Общая энтропия системы: + 3 ? = 583.3


В)


Энтропия при данной реакции будет:



№5


4.9гр. Х гр.

1 моль 2 моль

98 г. 112г.


ЭКОН =56/1=56

2Nкон =1л.


56/2=28 гр.

28гр  1л.

5.6  Х л.

Ответ: 200 мл.




Список используемой литературы:


  1. Учебное пособие к лабораторному практикуму по химии, М., изд-во МАИ, 1984г.

  2. Ахметов Н.С Общая и неорганическая химия, М., Высшая школа, 1980г.

  3. В.В. Фролов Химия М., Высшая школа, 1986г.



1