Вход

Автоматы с магазинной памятью

Реферат* по математике
Дата добавления: 11 августа 2003
Язык реферата: Русский
Word, rtf, 168 кб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Найти ещё больше




АВТОМАТЫ С МАГАЗИННОЙ ПАМЯТЬЮ



Автоматы и преобразователи с магазинной памятью играют важную роль при построении автоматно-лингвистических моделей различного назначения, связанных с использованием бесконтекст­ных (контекстно-свободных) языков. В частности, такие устройства используются в большинстве работающих программ для синтаксического анализа программ, написанных на различных языках программирования, которые во многих случаях можно рассматри­вать как бесконтекстные.

В отличие от конечных автоматов и преобразователей,
автоматы с магазинной памятью снабжены дополнительной магазинной памятью (рабочей лентой).

На рис. 1


такой преобразователь. Конечное управляющее устройство снабжается дополнительной управляющей головкой, всегда указывающей на

верхнюю ячейку магазинной памяти; за один такт работы автомата (преобразователя) управляющая головка может произвести следующие движения:

1) стереть символ из верхней ячейки (при этом все символы, находящиеся на рабочей ленте, перемещаются на одну ячейку вверх);

2) стереть символ из верхней ячейки и записать на рабочую ленту непустую цепочку символов (при этом содержимое

рабочей ленты сдвигается вниз ровно настолько, какова длина

с записываемой цепочки).

Таким образом, устройство магазинной памяти можно сравнить с устройством магазина боевого автомата: когда в него вкладывается патрон, те, которые уже были внутри, проталкиваются вниз; до­стать можно только патрон, вложенный последним.

Формально детерминированный магазинный автомат определя­ется как следующая совокупность объектов:

M = (V, Q, VM, ?, q0, z0, F),


где V, Q, q0 Є Q, F определяются так же, как и для конечного автомата;

VM = {z0, z1,…,zp-1} — алфавит магазинных символов авто­мата;

? — функция, отображающая множество Q X (V U { ? }) X VM
в множество Q X VM, где е — пустая цепочка;
z0 Є VM — так называемый граничный маркер, т. е. символ,
первым появляющийся в магазинной памяти.

Недетерминированный магазинный автомат отличается от де­терминированного только тем, что функция ? отображает множество Q X (V U { ? }) X VM. в множество конечных подмножеств Q x VM


Как и в случае конечных автоматов, преобразователи с магазинной памятью отличаются от автоматов с магазинной памятью нали­чием выходной ленты.

Далее будем рассматривать только недетерминированные магазин­ные автоматы.

Рассмотрим интерпретацию функции ? для такого автомата. Эту функцию можно представить совокупностью команд вида

(q, a, z)?(q1, ?1),…,(qm, ?m),

где q, q1,…qm Є Q, a Є V, z Є VM, ?1,…,?m Є V*m


При этом считается, что если на входе читающей головки авто­
мата находится символ а, автомат находится в состоянии q, а верхний символ рабочей ленты z, то автомат может перейти к состоянию qi, записав при этом на рабочую ленту цепочку ?i(1 ? i ? m)
вместо символа z, передвинуть входную головку на один символ
вправо так, как это показано на рис. 1, и перейти в состояние qi. Крайний левый символ ?i должен при этом оказаться в верхней
ячейке магазина. Команда (q, e, z)?(q1, ?1),…, (qm, ?m) означает,
что независимо от входного символа и, не передвигая входной го- +
ловки, автомат перейдет в состояние qi, заменив символ z магазина
на цепочку ?i(1 ? i ? m).

Ситуацией магазинного автомата называется пара (q, ?), где

q Є Q, ? Є V*m. Между ситуациями магазинного автомата (q, ?) и

(q’, ?’), устанавливается отношение, обозначаемое символом ?, если среди команд найдется такая, что

(q, a, z)?(q1, ?1),…,(qm, ?m),

причем ? = z?, ?’ = ?i? q' = qi для некоторого 1 ? i ? m (z Є Vm,

? Є V*m ).

Говорят, что магазинный автомат переходит из состояния (q, ?) в состояние (q’, ?’) и обозначают это следующим образом:

a: (q, ?)? (q’, ?’).

Вводится и такое обозначение:

a1...an: (q, ?)? * (q’, ?’),

если справедливо, что

ai: (qi, ?i)? (qi+1, ?i+1), 1 ? i ? m

где

ai Є V, ?1 = ?, ?2,…, ?n+1 = ?Є V*m

q1 = q, q2,…, qn+1 = q’ Є Q

Существует два способа определения языка, допускаемого ма­газинным автоматом. Согласно первому способу считается, что входная цепочка ? Є V* принадлежит языку L1 (M) тогда, когда после просмотра последнего символа, входящего в эту цепочку,

в магазине автомата М будет находиться пустая цепочка ?. Другими словами,

L1 (M) = { ? | ?: (q0, z0) ? * (q, ?)}

где q Є Q.

Согласно второму способу считается, что входная цепочка при­надлежит языку L2 (M) тогда, когда после просмотра последнего символа, входящего в эту цепочку, автомат М окажется в одном из своих заключительных состояний qf Є F. Другими словами,

L2 (M) = { ? | ?: (q0, z0) ? * (qf, ?)}

где ? Є V*m, qf Є F

Доказано, что множество языков, допускаемых произвольными магазинными автоматами согласно первому способу, совпадает с множеством языков, допускаемых согласно второму способу.

Доказано также, что если L (G2) — бесконтекстный язык, по­рождаемый Грамматикой G2 = (Vx, VT, Р, S), являющейся нормаль­ной формой Грейбах, произвольной бесконтекстной грамматики G, то существует недетерминированный магазинный автомат М такой, что L1 (M) = L (G2). При этом

M = (V, Q, Vm , ?, q0, z0, 0),

Где V=VT; Q={q0}; VM=VN; z0=S

а для каждого правила G2 вида

A?a?, a Є VT, a Є V*n

строится команда отображения ?:

(q0, a, A)?(q0, a)

Apia логично для любого недетерминированного магазинного автомата М, допускающего язык L1 (M), можно построить бескон­текстную грамматику G такую, что L (G) = L1 (M).

Если для конечных автоматов детерминированные и недетерми­нированные модели эквивалентны по отношению к классу допускае­мых языков, то этого нельзя сказать для магазинных автоматов. Детерминированные автоматы с магазинной памятью допускают лишь некоторое подмножество бесконтекстных языков, которые называют детерминированными бесконтекстными языками.









Список использованной литературы



КУЗИН Л.Т «Основы кибернетики» Т.2




























УКРАИНСКИЙ ГОСУДАРСТВЕННЫЙ

ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ









Р Е Ф Е Р А Т

По дискретной математике на тему:

«Автоматы с магазинной памятью»





Подготовил студент гр. 1киб-30

Кирчатов Роман Романович


Преподаватель

Бразинская Светлана Викторовна











ДНЕПРОПЕТРОВСК, 2002

© Рефератбанк, 2002 - 2025