Вход

Сложение колебаний

Реферат по физике
Дата добавления: 11 мая 2002
Язык реферата: Русский
Word, rtf, 1 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
Векторная диаграмма Колебаниями называются движения или процессы , о бладающие той или иной повторяемостью во времени. Сло жение нескольких гармонических колебаний одного направления и одинаковой частоты становится нагляд ным , если изображать колебания графически в виде векторов на плоскости . Полученная таким способом схема называется векторной диаграммой . Возьмем ось , вдоль которой будем откладывать колеблющуюся величину x . Из взятой на оси точки О отложим вектор длины A , образующий с осью угол б . Если привести этот вектор во вращение с угл о вой скоростью щ 0 , то проекция конца вектора будет перемещать ся по оси x в пределах от — А до + A , причем координата этой проекции будет изменяться со временем по закону Следовательно , проекция конца вектора на ось будет совершать гармонические колебания с ам плитудой , равной длине вектора , с круговой частотой , равной угловой скорости вращения вектора , и с на чальной фазой , равной углу , образуемо му вектором с осью в начальный момент времени. Таким образом , гармоническое колебание может быть задано с помощью вектора , длина которого рав на амплитуде колебания , а направление образует с осью x угол , равный начальной фазе колебаний. Рассмотрим сложение двух гармонических коле баний одного направления и одинаковой частоты . Результирующее колебание будет суммой колеба ний х 1 и x 2 , которые определяются функциями , (1) Представим оба колебания с помощью векторов A 1 и А 2 . Построим по правилам сложения векторов резу льтирующий вектор А . На рисунке вид но , что проекция этого вектора на ось x равна сум ме проекций складываемых векторов : Поэтому , вектор A представляет собой резуль тирующее колебание . Этот вектор вращается с той же угловой скоростью щ 0 , как и векторы А 1 и А 2 , так что сумма x 1 и х 2 являет ся гармоническим колебанием с частотой ( щ 0 , амплитудой A и начальной фа зой б . Используя теорему косинусов получаем , что (2) Также , из рисунка видно , что (3) Представление гармонических колебаний с помощью векторов позволяет заменить сложение функций сложением векторов , что значительно проще. Сложен ие колебаний во взаимно перпендикулярных направлениях. Представим две взаимно перпен дикулярные векторные величины x и y , изменяющие ся со временем с одинаковой частотой щ по гармони ческому закону , то (1) Где e x и e у — орты координатных осей x и y , А и B — амплитуды колебаний . Величин ами x и у может быть , например , смещения материальной точки (частицы ) из положения равновесия. В случае колеблющейся частицы величины , (2) определяют координаты частицы на плоскости xy . Частица будет двигаться по некоторой траектории , вид которой зависит от раз ности фаз обоих колебаний . Выражения (2) пред ставляют собой заданное в параметрической форме уравнение этой траектории . Чтобы получить уравне ние траектории в обычном виде , нужно исключить из уравнений (2) параметр t . Из первого уравне ния следует , что (3) Соответственно (4) Развернем косинус во втором из уравнений (2) по формуле для косинуса суммы : Подставим вместо cos щ t и sin щ t их значения (3) и (4): Преобразуем это уравнение (5) Это уравнение эллипса , оси которого по вернуты относительно координатных осей х и у . Ори ентация эл липса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз б . Попробуем найти форму траектории для нескольких частных случаев. 1. Разность фаз б равна нулю . В этом случае уравнение (5) упрощается следующим образом : Отсюда получается уравнение прямой : Результирующее движение является гар моническим колебанием вдоль этой прямой с частотой щ и ам плитудой , равной (рис . 1 а ). 2. Разность фаз б равна ± р . Из уравнение (5) имеет вид Следовательно , результирующее движение представ ляет собой гармоническое колебание вдоль прямой (рис . 1 б ) Рис .1 3. При уравнение (5) переходит в уравнение эллипса , приведенного к координатным осям : Полуоси эллипса равны соответствующим амплиту дам колебаний . При равенстве амплитуд А и В эллипс превращается в окружность. Случаи и отличаются на правлением движения по эллипсу или окружности . Следовательно , равномерное движение по окружности радиуса R с угловой скоростью щ может быть представлено как сумма двух взаимно перпен дику лярных колебаний : , (знак плюс в выражении для у соответс твует движе нию против часовой стрелки , знак минус — движе нию по часовой стрелке ). Если частоты взаимно перпендикулярных колеба ний не одинаковы , то траектории результирующего движения имеют вид сложных кривых , на зываемых фигурами Лиссажу. Фигура Лиссажу для отношения ча стот 1:2 и разности фаз р /2 Фигура Лиссажу для отношения частот 3:4 и разности фаз р /2
© Рефератбанк, 2002 - 2017