* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Содержание
Введение
Спектральный состав периодических колебаний
Анализ периодических колебаний
Частотный состав непериодического колебания
Библиографический список
В ступление
Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические функции. Их значение обусловлено рядом причин, основными из кот о рых являются:
– гармонические сигналы инвариантны (не изменяются) относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колеб а ний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой;
– техника генерирования гармонических сигналов достаточно проста.
Кроме того, известно (курс математики), что любое негармоническое колебание, удовлетворяющее определенным условиям, можно представить в виде суммы гармонических колебаний. При этом говорят, что осуществлено спектральное разложение этого сигнала, а отдельные гармонические компоненты си г нала образуют его спектр.
Спектральный состав периодических колебаний
Математической моделью процесса, повторяющегося во времени, является периодическое колебание со следующим свойством:
, n = 1, 2, …,
где Т – период колебания.
Известно, что любая периодическая функция, удовлетворяющая условиям Дирихле (интервал, на котором функция определена, может быть разбит на конечное число интервалов, в каждом из которых функция непрерывна и мон о тонна, и во всякой точке разрыва функции существуют переходы от одного конечного значения к другому), может быть представлена рядом Фурье. Если ряд Фурье представлен в тригонометрической форме, то его запись имеет следу ю щий вид:
, k = 0, 1, 2, …,
где .
То есть периодическое колебание можно представить как сумму постоянной составляющей и гармонических колебаний с частотами k 1 (гармоник), пр и чем совокупность амплитуд гармоник называется спектром амплитуд колебания , а совокупность начальных фаз называется спектром фаз к о лебания .
Очень часто используют комплексную форму ряда Фурье. Для перехода к этой форме воспользуемся формулой Эйлера:
.
Тогда ряд Фурье запишется в виде
.
Отсюда легко определяются комплексные амплитуды гармоник:
.
Поскольку периодическое колебание известного периода Т полностью описывается совокупностью амплитуд и фаз своих составляющих, то з а дание спектра такого колебания сводится к заданию его спектров амплитуд и фаз.
Пример графического изображения спектров амплитуд и фаз некоторого периодического колебания приведен на рисунке 1.
Рис. 1. Графическое изображение спектров амплитуд и фаз колебания
Каждая частотная составляющая изображается на графике спектра одним вертикальным отрезком – спектральной линией. Длина отрезка определяет величину амплитуды или начальной фазы , а местоположение о т резка на оси частот – частоту составляющей ( ).
Иногда пользуются и табличным способом задания спектра (табл. 1).
Таблица 1
Частота 0 Ампл и туда Н ачальная фаза –
Пример. Определить спектральный состав колебания, представляющего собой периодическую последовательность прямоугольных видеоимпульсов с извес т ными параметрами .
Решение.
В радиотехнике отношение называют скважностью последовательности. По формуле ряда Фурье в комплексной форме находим
.
Комплексная амплитуда пропорциональна функции вида , график которой показан на рисунке 2.
Рис. 2. График функции
Амплитуды гармоник определяются как модуль :
и пропорциональны функции вида , график которой показан на рисунке 4.
Рис. 4. График функции
График спектра амплитуд при показан на рисунке 5.
Рис. 5. График спектра амплитуд
Пунктирная линия, построенная по формуле , называется огибающей спектра амплитуд, в которую вписываются амплитуды га р моник на своих частотах . Нули огибающей будут на тех частотах, на которых
( n = 1, 2, 3, …),
откуда . Постоянная составляющая определяется как .
В пределах первого лепестка огибающей спектра амплитуд ( ) комплексная амплитуда положительна и вещественна, значит ( ). В области частот величина вещественна и отрицательна, значит ( ). Следовательно, начальные фазы га р моник изменяются на 180 при переходе через нули огибающей. График спе к тра фаз показан на рисунке 6.
Рис. 6. График спектра фаз
Изменение периода следования импульсов Т приводит к сгущению (при увеличении) или ра з ряжению (при уменьшении) спектральных линий.
Изменение длительности импульсов вызывает смещение нулей огибающей на оси частот, положение же спектральных линий при этом остается без изменения. В том случае, когда скважность последовательности импульсов , последовательность обладает богатым спектром, содержащим очень большое число медленно убывающих по амплитуде гармоник, и широко и с пользуется в синтезаторах частот.
Спектр амплитуд позволяет наглядно судить о соотношении между амплитудами гармоник и о полосе частот, в пределах которой расположены энергетич е ски значительные частотные составляющие.
Для периодического колебания средняя мощность Р ср может быть представлена формулой
.
Кроме того, доказано, что средняя мощность периодического колебания равна сумме средних мощностей составляющих гармоник:
.
Это равенство называют равенством Парсеваля. Сопоставляя квадраты амплитуд гармоник, можно судить о распределении общей мощности периодического колебания по диапазону частот, а, следовательно, строить ради о технические устройства, ограничивая спектр передаваемого колебания требуемым числом спектральных составляющих, тем самым уменьшая частотный диапазон передаваемых сигналов. Обычно спектр ограничивают частотой, на которой сумма мощностей постоянной составляющей и вошедших в этот диапазон гармоник составляет не менее 90 % полной средней мощности колебания.
Анализ периодических колебаний в электрических ц е пях
В основу анализа линейных электрических цепей, находящихся под воздействием периодических негармонических колебаний, лежит принцип наложения. Его суть применительно к негармоническим воздействиям сводится к разложению негармонического периодического колебания в одну из форм ряда Фурье и определения реакции цепи от каждой гармоники в отдельности. Результирующая реакция находится как сумма полученных частных реакций.
Анализ проведем на примере. Пусть ко входу последовательной RC - цепи ( рис. 7 ) подведено воздействие в виде периодической последовательности в и деоимпульсов с амплитудой А = Е и скважностью .
Рис. 7
Требуется определить реакцию – напряжение на элементе емкости .
На вход цепи поступает периодическое колебание, разложение которого в ряд Фурье дает следующий результат:
Из ряда видно, что в составе разложения отсутствуют гармоники с четными номерами, так как скважность последовательности импульсов равна 2. Ограничимся первыми тремя членами разложения. Приложенное напряжение содержит пост о янную составляющую , первую и третью гармоники с нулевыми начальными фазами. Найдем напряжение на емкости от постоянной составляющей приложенного напряжения:
.
Комплексное действующее напряжение от первой гармоники будет равно:
Аналогично находим напряжение на емкости от 3-й гармоники
.
Теперь можно записать мгновенное значение напряжения на емкости в виде ряда:
.
Действующее значение напряжения определяем, как
.
Частотный состав непериодического колебания
От периодического колебания к непериодическому можно просто перейти, если не изменяя формы импульса безгранично увеличивать период его следования, что, в свою очередь, приведет к бесконечно близкому расположению друг к другу спектральных составляющих, а значения их амплитуд становятся бесконечно малыми. Однако начальные фазы этих составляющих так о вы, что сумма бесконечно большого числа гармонических колебаний бесконечно малых ампл и туд отличается от нуля и равна функции только там, где существует импульс. Поэтому понятие спектра амплитуд для непериодического колебания не имеет смысла, и его заменяют, используя прямое и обратное преобразования Фурье.
Известно, что функция, удовлетворяющая заданным условиям, может быть представлена интегралом Фурье (обратное преобразование Фурье)
.
Используя прямое преобразование Фурье, приходим к интегралу
.
Функция называется комплексной спектральной плотностью амплитуд , а ее модуль – спектральной плотностью амплитуд . Аргумент называют фазовым спектром непериодического колебания.
В качестве примера рассмотрим колебание, описываемое экспоненциальной функцией при положительном вещественном значении параметра .
Найдем спектральную плотность:
Особенностью комплексного спектра является его распространение, как на положительную, так и на отрицательную области частот. Графики нормированного амплитудного и фазового спектров представлены на рисунке 8 .
а б
Рис. 8 . Спектральная плотность экспоненциального видеоимпульса:
а – нормированный амплитудный спектр; б – фазовый спектр
Распределение энергии в спектре непериодического кол е бания
Пусть непериодическое колебание описывается функцией . Тогда можно записать
.
Проинтегрируем это выражение по переменной в бесконечных пределах:
В этом выражении
,
где – комплексная величина, сопряженная с .
Следовательно,
.
Произведение двух сопряженных комплексных величин равно квадрату модуля одной из них, поэтому
.
Так как левая часть равенства определяет энергию колебания , то это можно сказать и о правой части. Но тогда
есть ни что иное, как энергия колебания, приходящаяся на один радиан пол о сы частот для текущей частоты .
Иными словами, является спектральной плотностью энергии колебания и характеризует распределение энергии в полосе частот колебания :
.
Энергетически значимые участки спектра расположены в тех частотных полосах, в которых значение спектральной плотности относительно вел и ки.
Пример. Определить спектральную плотность энергии прямоугольного видеоимпульса с параметрами: длительность , амплитуда и располагается симметрично относительно начала отсчета времени.
На основании формулы прямого преобразования Фурье найдем спектральную плотность амплитуд
Спектральную плотность энергии легко определить путем возведения в квадрат спектральной плотности амплитуд:
Введем безразмерную переменную и представим результаты определения спектральной плотности амплитуд и спектральной плотности эне р гии в следующем виде:
;
.
Теперь легко построить нормированные спектры как функций безразмерной частотной переменной (рис. 9 и 10 ).
Рис. 9 . График нормированной спектральной плотности прямоугольного виде о импульса как функции параметра
Рис. 10 . Нормированный энергетический спектр прямоугольного
видеоимпул ь са как функции безразмерной частотной переменной
Библиографический список
1. Белецкий А. Ф. Теория линейных электрических цепей.– М.: Радио и связь, 1986.
2. Суднищиков В. С. Основы теории передачи и устройства преобр а зования сигналов (часть 1).– Орел:
3. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов.– М.: Наука, 1986.
.