Вход

Вихри течения Ойясио

Реферат по географии, экономической географии
Дата добавления: 23 января 2002
Язык реферата: Русский
Word, rtf, 2.8 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
Вихри течения Ойясио Как известно , погода зависит от проходящих атмосферных вихрей - циклонов и антициклонов . Так , тай фуны - тропические циклоны в Тихом океане со скоростью ветра до 250 км /ч - приносят на побережье ливневые осадки , приводящие к катастрофическим наводнениям . В океане также есть синоптические вихри , их называют циклонами и антициклонами , если вода в них вр а щается соответственно против или по часовой стрелке [ 1 ]. Однако эти вихри сильно отличаются от тех , которые непосредственно формируют погоду . Океанические антициклоны живут довольно долго , охватывая всю толщу вод от поверхности до дна и перемещаясь вместе с течениями или против них . В Тихоокеанском океаноло гическом институте РАН уже около 20 лет ведутся наблюдения за большими антициклоническими вихрями , формирующимися на западе Тихого океана , в зоне слияния двух главных течений этого региона : Ойясио и Куросио [ ]. Растянутые вдоль всей длины Курило-Камчатского желоба , эти вихри медленно движутся на северо-восток , против основного потока Ойясио , в субарктические воды . Свойства вихрей (их размеры , температура и соленость в ядре ) не постоянны . Изменчивость такого масштаба оказалась самой большой из наблюдавшейся где-либо еще в океане . Кроме того , вихри стали новым индикатором вариаций климата океана . Один из них , н азванный WCR86B (вихрь Куросио 1986 г . с теплым ядром ), отделился от течения Куросио примерно у 37°с.ш . и двигался вдоль желоба против течения на северо-восток со скоростью около 1-2 см · с – 1 . В сентябре 1990 г . он достиг широты пролива Буссоль (46.5°с.ш .), отделяющего южную группу Курильских о-вов от средней . Даже так далеко от места своего появления он содержал теплое и соленое ядро в верхнем слое воды (что обычно для вихрей Куросио у побережья Японии ) и ядро низкой солености в промежуточных слоях (250-600 м ). (Из-за этого вихри Ойясио называют вихрями с пресным ядром .) Слежение за вихрем проводилось с помощью последовательных съемок [ 2 - 6 ] на судах Тихоокеанского океанологического института (ТОИ ) и непрерывных спутниковых изображений , принятых и обработанных в Институте автоматики и процессов управления ДВО РАН . Подобные вихри (а каждый год у пролива Буссоль нах одится новый антициклон ) - индикатор быстрых изменений , происходящих в холодных водах Тихого океана в последнее десятилетие и названных климатическим сдвигом [ 3 - 5 ]. Каким же образом вихри связаны с процессами , определяющими климат ? Вихри и вариации климата океана Накопленное верхними слоями океана в низких широтах солнечное тепло переносится летом теплыми теч ениями (такими , как Куросио ) в умеренные . В холодный период года океан в высоких широтах отдает его в атмосферу . Это один из основных механизмов воздействия океана на климат . Самый длинный ряд инструментальных наблюдений за температурой и осадками относит с я к континентам , и только в последние годы благодаря специальному проекту Всемирной метеорологической организации появились первые данные об осадках над океаном . Количество осадков прямо зависит от температуры поверхности океана и тепла , переносимого глав ными океанскими течениями . Однако во фронтальной зоне (т.е . в области больших градиентов температуры и солености ) тепло и соль переносят не только течения , но и синоптические вихри океана , характеристики которых свидетельствуют помимо прочего об изменения х в системе течений (циркуляции вод в океане ). Считается , что в 1976 г . в Тихом океане произошла смена режима океана [ 3 ]. Но , несмотря на более чем десятилетние исследования , ее механизмы до сих пор не ясны . В Приморском крае в 1976-1977 гг . разразилась драматическая засуха , а зимы были самыми продолжительным и . Похожая ситуация сложилась в 1996-1997 гг . В период с 1988 по 1992 г . количество осадков превышало их сумму за 1976 г . в четыре раза . Эти наблюдения свидетельствуют о сильной декадной (10-летней ) изменчивости осадков , и именно она “ответственна” за рос т суммы осадков в 1989-1991 гг . и в 2000-м . Нужно отметить , что стратификация и циркуляция субарктических вод в значительной степени определяются соленостью , и поэтому они должны сильно зависеть от притока пресной воды в океан , а его изменчивость в Субаркт и ке Тихого океана до сих пор не изучалась . В 2000 г . проливные дожди и наводнения начались для Приморья довольно рано , в конце июля , с выходом в Японское море тайфуна Болавин . Не только в Приморье , но и в Японии и Корее сумма осадков в том году оказалась р екордной за всю историю наблюдений , что связано со стационарным сезонным фронтом и тайфуном Саомай . В центральных районах Японии в течение двух дней выпало более 80 см осадков . Примерно столько же Владивосток обычно получает в течение всего года . Кроме то г о , поздней осенью 2000 г . на северо-западе Тихого океана сформировался очень глубокий циклон с давлением в центре около 950 мб . Его последствием стала гибель теплохода “Рязань” - он затонул в Беринговом море 6 ноября . Что происходило во время этих погодны х вариаций в океане ? Регулярные наблюдения за течениями и вихрями начались в 90-е годы в рамках программы (совместной с Канадским тихоокеанским океанологическим институтом ) по изучению климата северной части Тихого океана . Детальными съемками была охвачен а обширная область субарктических вод у Курильских о-вов и Камчатки - так называемых западных пограничных течений : Камчатского и Ойясио . Одной из задач был поиск океанографических индикаторов , способных дать достаточно полное представление о происходящих и з менениях климата и одновременно не требующих больших затрат судового времени . Исследования позволили выделить все детали основных течений , включая протяженную цепь больших антициклонических вихрей Ойясио , растянутых вдоль глубоких желобов у Японии , Курил и Камчатки . После длительного перерыва наблюдения были продолжены в 2000 г . в экспедиции Японского центра морских наук и технологий с участием сотрудников ТОИ на судне “Мирай” . В целом с 1990 по 2000 г . были изучены характеристики около двух десятков вихре й пограничных течений и семь различных антициклонических вихрей Ойясио у пролива Буссоль . В 1990 г . у пролива находился уже упомянутый самый большой вихрь WCR86B с теплым соленым ядром . В серии следующих друг за другом вихрей Ойясио с 1990 по 1996 г . их я дра , расположенные на глубине 100-400 м , постепенно становились холодней , а соленость в них уменьшалась . Если в 1994-1996 гг . горизонтальные и вертикальные размеры вихрей значительно сократились , а их динамический уровень (возвышение поверхности океана из- за вариаций плотности ) упал , то , по наблюдениям 2000 г ., эти характеристики в последние четыре года выросли . За истекшее время произошло возвращение пограничных течений в прежнее состояние , а вихри Ойясио стали большими и глубокими , при этом выросла их ди н амическая высота . Вместе с переменами на континенте смены в океане указывали на существование быстрой изменчивости климата в регионе . Другими словами , размеры , глубины и структура вихрей могут служить новым климатическим индексом , способным дать представл ение о процессах , происходящих в океане . Первоначально именно наблюдения за вихрями позволили сделать вывод о быстром изменении климата в Субарктике Тихого океана , которое было названо термохалинным переходом . Главным его последствием стала смена циркуляц и и в океане [ 4 - 5 ]. Она согласуется с похожими процессами на северной границе субарктического круговорота [ 5 ]. Стало ясно , что субполярный круговорот в океане с го ризонтальным масштабом около 4000 км может характеризовать вихри диаметром около 200 км . На спутниковых снимках к востоку от Курильских о-вов всегда можно увидеть несколько таких больших антициклонических вихрей . Ловушка длинных волн Данные дрейфующих бу ев и акустические наблюдения за глубиной звукорассеивающих слоев показывают , что у антициклонических вихрей сложная внутренняя структура : они способны захватить и держать в своем ядре длинные волны большой амплитуды , которые называют инерционными . Течения, вызываемые такими волнами , вместе с приливными движениями вносят значительный вклад в перемешивание верхнего слоя океана [ 7 ]. Самые интересные наблюдения дали три буя (дрифтера ), установленные осенью 1990 г . на участке , проходящем у пролива Буссоль через центр антициклонического вихря (эти приборы были пре доставлены нам канадским океанологом П.Леблоном ). Они не только вращались в вихре , но и совершали большие регулярные петли . Один из этих буев показал инерционные движения очень большой амплитуды . В ядре вихря он дрейфовал со средней скоростью около 40-45 с м · с – 1 и радиусом вращения 15-20 км . На это среднее вращение накладывались инерционные петли с периодом , близким к суткам , и радиусом 7-8 км . Скорости течений достигали 140 см · с – 1 в центре вихря и заметно уменьшались на его границах . Вместе с изменением амп литуды этих возмущений менялся инерционный период . Принято считать , что инерционные возмущения возникают при резкой смене ветра . В Северном полушарии вектор скорости таких течений вращается так же , как в приливной волне - по часовой стрелке . Инерционные с илы в таких движениях - сила Кориолиса и центробежная , связанная с траекторией частиц воды , поэтому инерционный период определяется широтой места . Например , на широте пролива Буссоль он должен составлять около 17 ч . Однако в вихре инерционный период был г о раздо больше . Дело в том , что в антициклоническом вихре вращение противоположно направлению вращения Земли . Тем самым создаются особые условия для инерционных волн - вихрь меняет относительную завихренность (из-за собственного вращения ). В результате пони жается локальная инерционная частота волн внутри вихря . По сути волны чувствуют не только вращение Земли , но и его вращение . Кроме того , свободно распространяться могут только волны , частота которых больше локальной инерционной . Ее понижение в центре вихр я и обеспечивает захват волн внутрь него , они уже не могут покинуть созданную им ловушку . Но как только локальная инерционная частота (ее можно назвать эффективной ) становится близкой к частоте суточного прилива , оказывается возможным захват приливной энер гии . Точно так же вихри способны накапливать и использовать энергию ветра , когда захватывают инерционные волны , возбужденные им . Усиление таких движений в ядре вихря ведет к генерации турбулентности , поэтому степень перемешивания в его ядре должна менятьс я вместе с внешним воздействием , например при прохождении глубоких атмосферных циклонов . Возбуждение инерционных движений , таких как в вихре Ойясио , требует сильного внешнего воздействия . Возможные источники таких волн - ветер и приливные течения . Глубокий циклон действительно прошел во время постановки буев в вихре Ойясио , в ноябре 1990 г ., но , к сожалению , буи довольно быстро его покинули . Механизм возбуждения волн приливными течениями рассматривается пока как гипотеза , поскольку нет достаточного количес т ва данных о двухнедельных циклах , таких как полученные на банке Кашеварова [ 8 ]. На этом этапе наших знаний можно полагать , что оба механизма генерации инерционных движений (ветер и приливы ) равносильны . Правда , сравнение с другими наблюдениями [ 9 ] показывает , что сильные шторма не вызывают волн такой амплитуды . Так , тайфун Нельсон со скоростью ветра , достигавше й 43.5 м /с , в 1989 г . перемешал слой воды глубиной 100 м . Он прошел в 50 км к северу от заякоренного буя с инструментами , измерявшими скорость течения . Амплитуда скорости инерционных возмущений составила “только” около 80 см · с – 1 , т.е . гораздо меньшие , чем в вихре Ойясио [ 9 ]. Еще один аргумент в пользу приливн ой генерации волн - совпадение времени установки буя в вихре Ойясио с максимальной амплитудой приливных течений и уменьшением размеров инерционных петель при их ослаблении . Особенно интересна продолжительность жизни вихря Ойясио . Казалось бы , он должен ра зрушаться из-за турбулентной диссипации (так , антициклонические ринги Гольфстрима в Северной Атлантике живут только 3-6 мес ). Вместе с тем , вихрь Ойясио WCR86B продолжал двигаться вдоль Курило-Камчатского желоба еще в конце 1991 г ., т.е . существовал более пяти лет . Инерционные волны , генерируемые ветром или приливом , могут не только продлевать жизнь вихря , но и регулярно поставлять энергию для перемешивания его ядра . Хотя в жизни больших антициклонических вихрей течения Ойясио еще много загадок (как вообще в глубоком океане ), ясно , что их характеристики могут быть новым индексом климатической изменчивости , способным достаточно полно дать представление о происходящих изменениях . Работа выполнена при поддержке Российского фонда фундаментальных исследований . Проект 01-05-96902. Антициклонические вихри ( желтые круги ) движутся вдоль Курило-Камчатской котловины к северо-востоку. Красная линия - траектория движения буя , установленного в в ихре Буссоль. Вихри у южных Курильских о-вов . Инфракрасное изображение , полученное со спутника НОАА в Центре приема спутниковой информации Института автоматики и процессов управлен ия ДВО РАН . Шкала цвета соответствует увеличению температуры слева направо и снизу вверх . Белые точки - положение океанографических станций на разрезе через вихрь Ойясио . Слева - в мае 2000 г ., когда здесь располагался самый крупный антициклонический вихрь , который наблюдался в регионе ; справа - в апреле 2001 г. Динамическая топография (возвышения поверхности океана из-за разного распределения плотности ) вихрей у пролива Буссоль в разные годы . Серым цветом показаны вихри Ойясио , красными стрелками - полож ение струй Ойясио . Хорошо заметно изменение размеров вихрей и смена главных струй течения : с морской (02 – 1990 г .) на прибрежную (01 – 1996 г .) и снова на морскую (в 2000 г .). Рисунок из работы [ 4 ]. Изменение диаметра вихрей Ойясио ( вв ерху ) и аномалии осадков (отклонение от среднемноголетней суммы ) во Владивостоке . Цветом показаны отрицательные аномалии , соответствующие засухе , особенно сильной в 1976 и 1997 гг .; черным - отмечены годы с положительной аномалией , во время которых случали сь наводнения. Температура (°С ) и соленость (‰ ) в вихрях Ойясио (числа на изолиниях ) в сентябре 1989 г . (вверху ) и в фе врале 2000 г . На разрезах вверху хорошо заметно холодное и пресное ядро , расположенное под теплым и соленым . На рисунках внизу видно , что вихрь содержит мощное теплое и соленое ядро . Диаметр вихря превышает 200 км , а глубина ядра больше 700 м . Разрезы пос т роены с использованием данных научно - исследовательского судна “Мирай” (Японское агентство по морским наукам ). Тра ектория буя , установленного в вихре Ойясио ( слева ), и ее фрагмент во время стандартного оборота с петлями инерционных волн . Числа - время в сутках с начала наблюдений. Литература 1. Кошляков М.Н . Синоптические вихри открытого океана // Природа . 1997. № 6. С .17-20. 2. Лобанов В.Б ., Рогачев К.А ., Булатов Н.В . и др. // Докл . АН СССР . 1991. Т .317. № 4. С .984-988. 3. Рогачев К.А . Быстрые изменения в холодных водах Субарктики Тихого океана // Рос . наука : день нынешний и день грядущий : Сб. науч.-поп . статей . М ., 1999. 4. Rogachev K.A. // Journ. of Geophysical Research. 2000. V.105. C4. P.8513-8526. 5. Rogachev K.A. // Progress in Oceanography. 2000. V.47/2-4. P.299-336. 6. Rogachev K.A., Carmack E.C., Salomatin A.S. // Journ. of Marine Systems. 2000. V.26. P.239-258. 7. Рогачев К.А ., Саломатин А.С ., Юсупов В.И . и др . // Океанология . 1996. Т .36. № 3. С .347-354. 8. Рогачев К.А . Полынья на банке Кашеварова // Природа . 2001. ?3. С .33-38. 9. Taira K., Kitagawa S., Otobe H., Asai T. // Journ. Oceanography. 1993. V.49. P.397-406. Декабрь 2001
© Рефератбанк, 2002 - 2017