Вход

Контрольная по схемотехнике

Рекомендуемая категория для самостоятельной подготовки:
Решение задач*
Код 622390
Дата создания 2018
Страниц 2
Мы сможем обработать ваш заказ (!) 27 января в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
730руб.
КУПИТЬ

Содержание

Запись логического выражения в СДНФ на основании изложенных выше правил следующая:
y(x1x2x3)=¯(x_1 )*¯(x_2 )*¯(x_3 )∪¯(x_1 )*x_2*¯(x_3 )∪¯(x_1 )*¯(x_2 )*x_3∪¯(x_1 )*x_2*x_3∪x_1*x_2*x_3
В стандартную карту Вейча для трех переменных по координатам (набору аргументов) заносят 1 в определенную клетку.

Введение

По заданной таблице истинности (Таблица 3) представить функцию в виде логического выражения. Форма представления функции – СДНФ. Произвести минимизацию функции с помощью карт Вейча. Записать упрощенное, сокращенное выражение в форме ДНФ и составить логическую схему функции в базисе И, ИЛИ, НЕ.

Фрагмент работы для ознакомления

Решение контрольной работы по схемотехнике. Работа сдана в 2018 году на отлично. Работа для колледжа.

Список литературы

Методические указания для выполнения работы
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00336
© Рефератбанк, 2002 - 2025