Вход

Теория вероятностей 11 задач

Рекомендуемая категория для самостоятельной подготовки:
Контрольная работа*
Код 611594
Дата создания 2016
Страниц 11
Мы сможем обработать ваш заказ (!) 11 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
730руб.
КУПИТЬ

Содержание

1. В комплекте 12 деталей 1-го сорта и 6 - второго. Наудачу вынимаются 4 детали. Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
Найти параметр A; функцию распределения; математическое ожидание; дисперсия. среднеквадратическое отклонение.
Вероятность того, что случайная величина Х примет значение из интервала π/6 < x < π/3
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Введение

1. В комплекте 12 деталей 1-го сорта и 6 - второго. Наудачу вынимаются 4 детали. Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
Найти параметр A; функцию распределения; математическое ожидание; дисперсия. среднеквадратическое отклонение.
Вероятность того, что случайная величина Х примет значение из интервала π/6 < x < π/3
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?

Фрагмент работы для ознакомления

подробное решение 10 задач.
Оформление - ворд

Список литературы

1. В комплекте 12 деталей 1-го сорта и 6 - второго. Наудачу вынимаются 4 детали. Найти вероятность того, что среди них окажутся 3 детали первого сорта.
2. В урне 5 белых и 4 красных шара, одинаковых на ощупь. Наудачу вынимаются 3 шара. Найти вероятность того, что среди извлеченных шаров будет не менее двух красных.
3. Найти вероятность безотказной работы электрической цепи, coстоящей из независимо работающих элементов, если вероятность работы каждого элемента равна 0,98
4. Комплект состоит из 16 деталей завода № 1, 12 деталей завода № 2 и 22 деталей завода № 3. Вероятности того, что деталь низкого качества соответственно равны 0,08 для первого завода, 0,06 - для второго завода и 0,1 для третьего. Найти вероятность того, что наудачу вынутая деталь из комплекта будет высокого качества.
5. Событие В появится в том случае, если событие А наступит не менее двух раз. Найти вероятность появления события В, если произведено шесть независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.
6. Автобаза обслуживает 140 магазинов. От каждого из них заявка на автомашины на следующий день может поступить с вероятностью 0,7. Найти вероятность того, что поступит не менее 110 и не более 120 заявок; ровно 110 заявок.
7. В команде 9 спортсменов, из них 4 - первого разряда и 5 - второго. Наудачу отобраны 3 спортсмена. Найти ряд распределения дискретной случайной величины Х - числа спортсменов второго разряда среди отобранных.
среди тобранных спортсменов второго разряда
9. Коммутатор учреждения обслуживает 200 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение минуты позвонят более двух абонентов.
10. Случайная величина Х задана плотностью распределения f(x):
0, x ≤ 0
A•sin(2x), 0 < x < π/2
0, x ≥ π/2
Найти параметр A; функцию распределения; математическое ожидание; дисперсия. среднеквадратическое отклонение.
Вероятность того, что случайная величина Х примет значение из интервала π/6 < x < π/3
11. На станке изготавливается деталь. Ее длина Х - случайная величина, распределенная по нормальному закону с параметрами a = 23,0 см, σ = 1,6 см. Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от "a" можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно "a", будут лежать практически все размеры деталей?
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00346
© Рефератбанк, 2002 - 2024