Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код |
591468 |
Дата создания |
2015 |
Страниц |
22
|
Мы сможем обработать ваш заказ (!) 11 ноября в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
Введение 3
Понятие дифференциального уравнения 4
Понятие степенного ряда 9
Решение дифференциальных уравнений с помощью рядов 13
Применение метода для уравнения первого порядка 15
Примеры решения задачи в Maple 17
Пример уравнения второго порядка 20
Заключение 21
Список используемой литературы 22
Введение
При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Лучше всего это делать в виде дифференциальных уравнений (ДУ) или системы дифференциальных уравнений. Наиболее часто такая задача возникает при решении проблем, связанных с моделированием кинетики химических реакций и различных явлений переноса (тепла, массы, импульса) – теплообмена, перемешивания, сушки, адсорбции, при описании движения макро- и микрочастиц.
Известные методы точного интегрирования дифференциальных уравнений позволяют найти решение в виде аналитической функции, однако эти методы применимы для очень ограниченного класса функций. Большинство уравнений, встречающихся при решении практических задач нельзя проинтегрировать с помощью этих методов.
В таких случаях используются численные методы решения, которые представляют решение дифференциального уравнения не в виде аналитической функции, а в виде таблиц значений искомой функции в зависимости от значения переменной.
Существует несколько методов численного интегрирования дифференциальных уравнений, которые отличаются друг от друга по сложности вычислений и точности результата.
Рассмотрим три основных метода приближенного решения обыкновенных дифференциальных уравнений первого порядка: Метод ломанных (Эйлера), метод последовательных приближений (Пикара) и метод разложения решения в степенной ряд.
Фрагмент работы для ознакомления
В данной работе был рассмотрен основной метод приближенного решения обыкновенных дифференциальных уравнений первого порядка: метод разложения решения в степенной ряд.
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.
Список литературы
1. Лапчик М.П., Рагулина М.И., Хеннер Е.К. Численные методы. – М.: Академия, 2005. – 384 с.
2. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. – М.: Наука, 1967. – 368 с.
3. Ортега Дж., Пул У. Ведение в численные методы решения дифференциальных уравнений. – М.: Наука, 1986. – 288 с.
4. Хартман Ф. Обыкновенные дифференциальные уравнения. – М.: Мир, 1970. – 720 с.
5. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. – М.: Наука, 1974. – 331 с.
6. Вержбицкий В.М. Основы численных методов. – М.: Высшая школа, 2001. – 382 с.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.0489