Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код |
572947 |
Дата создания |
2022 |
Страниц |
18
|
Мы сможем обработать ваш заказ (!) 24 декабря в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
Содержание
Введение ………………………………………………………………………..3
1. Методы выявления интервалов……………………………………………..4
2. Пластовые флюдопроявления……………………………………………...8
3. Приток пластового флюида в скважину в процессе бурения…………...10
4. Оценка вида поступившего флюида………………………………………11
5. Приток в процессе спуско - подъемных операций……………………….14
Заключение
Список Литературы
Введение
Введение
Для уточнения положения, мощности и вертикальной неоднородности коллекторов, определения эффективности перфорации, гидроразрыва, солянокислотной обработки, оценки коэффициента продуктивности отдельных прослоев, а также для решения других задач в разрезе, вскрытом эксплуатационной скважиной, необходимо выделить интервалы, отдающие жидкость, определить дебит из каждого пласта. В нагнетательных скважинах соответственно необходимо выделить интервалы, принимающие жидкость, и определить объем жидкости, поглощаемой, каждым интервалом.
Аналогичные исследования необходимо проводить также до и после мероприятий по интенсификации пластов (солянокислотной обработки, гидроразрыва, дополнительной перфорации, и т. п.) с целью выяснения эффективности обработки.
В результате исследований получают график изменения суммарного (для всех пластов ниже заданной глубины) или поинтервального дебитов по глубине скважины, называемых профилями притока (поглощения) жидкости или газа.
Профили притока получают следующими методами:
1) измерением скорости движения жидкости в стволе скважины с помощью специальных приборов, называемых дебитомерами и расходомерами (первые предназначены для исследования эксплуатационных скважин, вторые - нагнетательных);
2) определением скорости движения по стволу скважины некоторой «метки », например радиоактивных изотопов, нагретой воды: и т. п., добавленных в поток флюида, или части флюида, отличающейся радиоактивностью, температурой или другими свойствами;
3) изучением изменений температуры флюида в месте его.
Фрагмент работы для ознакомления
Заключение
Основные помехи при дебитометрии следующие: 1) неполнота пакеровки из-за нарушения пакера или неплотного прилегания его к трубе; 2) изменение внутреннего диаметра обсадных труб, обусловливающее погрешность в определении дебита при исследованиях с беспакерными приборами или с приборами с неполной пакеровкой; 3) нарушение герметичности цементного кольца, приводящее к тому, что часть жидкости (газа) движется по заколонному пространству; влияние этого фактора особенно велико при замерах пакерными приборами; 4) образование столба жидкости в забое, частично или полностью перекрывающего интервалы поступления нефти или газа; влияние этого фактора особенно существенно для беспакерных дебитомеров. Наконец, скорость потока меняется в зависимости от положения прибора относительно стенки скважины. Эта зависимость особенно сильна для приборов малого диаметра, поэтому они должны снабжаться центрирующими фонарями.
Основные положительные качества: неподверженность системы влиянию механических примесей, высокая чувствительность, низкая погрешность исследования в однородных жидкостях. При исследовании многофазного потока термокондуктивный дебитомер может оценить поток только качественно («есть приток», «нет притока»). Особенностью термокондуктивных дебитомеров, существенно сужающей область их применения, является большая зависимость показаний прибора от теплофизических свойств исследуемых жидкостей.
Профили расхода, полученные при расходометрии, целесообразно дополнять результатами обработки других методов, дающих информацию о заколонных и межколонных перетоках. Комплексный подход позволяет в ряде случаев обнаружить обводнение продуктивных пластов и образование техногенных залежей газа.
Список литературы
Список литературы
1). Справочник геофизика. Том второй Геофизические методы исследования скважин. Под редакцией С.Г. Комарова. – Гостоптехиздат, М.–1961.
2). Справочник геофизика. Геофизические методы исследования скважин. Под редакцией В.М. Запорожца. – Недра, М.–1983.
3). Геофизические исследования скважин. В.М. Добрынин, Б.Ю. Вендельштейн, Р.А. Резванов, А.Н. Африкян. – Нефть и газ, М.–2004.
4). Глубинные приборы для исследования скважин. А.И. Петров. – Недра, М.–1980.
5). Справочник. Аппаратура и оборудование для геофизических исследований нефтяных и газовых скважин. А.А. Молчанов, В.В. Лаптев, В.Н. Моисеев, Р.С. Челокьян – Недра, М.–1987.
6). Скважинный термокондуктивный дебитомер СТД. И. Г. Жувагин, С. Г. Комаров, В. Б. Черный. – Недра, М.–1973.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00364