Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код |
563376 |
Дата создания |
2013 |
Страниц |
50
|
Мы сможем обработать ваш заказ (!) 25 декабря в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
Наименование Стр.
Введение 3
§1. Некоторые вспомогательные определения 7
§2. Простейшие свойства модулей непрерывности 20
§3. Обобщение теоремы Джексона 24
§4. Обобщение неравенства С.Н.Бернштейна 27
§5. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную функцию 30
§6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена 34
§7. Основная теорема 44
§8. Решение задач 47
Литература 50
Введение
В настоящей работе мы рассматриваем следующие задачи:
1. При каких ограничениях на непрерывную функцию F(u) (-1 u +1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок (n-1 )?
2. При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок (n-1 )?
Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.
Мы ограничимся случаем, когда N , для некоторого , где - функция сравнения р-го порядка и для 0
Фрагмент работы для ознакомления
Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.
Дипломная работа носит реферативный характер и состоит из “Введения” и восьми параграфов.
Список литературы
1. Бернштейн С.Н. О свойствах однородных функциональных классов // Доклады Ак. Наук СССР,-1947.-№57.-с.111-114.
2. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
3. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени // Сообщ. Харьк. Матем. о-ва (2), -1912.-№13.-с.49-144.
4. Бернштейн С.Н. Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть I,-М.-Л.,-1937.
5. Никольский С. Обобщение одного неравенства С.Н.Бернштейна // Доклады Ак. Наук СССР,-1948.-№65.-с.135-137.
6. Гончаров В.Л. Теория интерполирования и приближения функций.-М.-Л.,-1934.
7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. -М.: Наука.-1977.-с.512.
8. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137.
9. Тиман А.Ф. Теория приближения функций функций действительного переменного. -М.:ГИФМЛ,-1960.-с. 624.
10. Ахиезер Н.И. Лекции по теории аппроксимаций.-М.:ГИТТЛ,-1947.-324.
11. Арестов В.В. О равномерной регуляризации задачи вычисления значений оператора // Математические заметки,-т.22.-1977.-№2.-с.231-243.
12. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Изв. АН СССР-Математика,-1931.-№15.-с.219-242.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00444