Код | 504526 |
Дата создания | 2023 |
Мы сможем обработать ваш заказ (!) 23 декабря в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
|
Задача 1. Тема: «Нормальное распределение»
Средний срок службы коробки передач до капитального ремонта у автомобиля определенной марки составляет 56 мес. со стандартным отклонением
мес. Привлекая покупателей, производитель хочет дать гарантию на этот узел, обещая сделать бесплатно любое число ремонтов коробки передач нового автомобиля в случае ее поломки до определенного срока. Пусть срок службы коробки передач подчиняется нормальному закону. На сколько месяцев в таком случае производитель должен дать гарантию для этой детали, чтобы число бесплатных ремонтов не превышало 2,275% проданных автомобилей?
Задача 2. Тема: «Интервальные оценки»
С помощью случайной выборки оценивается среднее время ежедневного просмотра телепередач абонентами кабельного телевидения в период с 18 до 22 ч. Каким должен быть объем выборки в этом случае, если в предыдущих выборочных обследованиях стандартное отклонение времени просмотра передач составило 40 мин., а отклонение выборочной средней от генеральной средней по абсолютной величине не должно превышать 5 мин. с вероятностью 0,9?
Задача 3. Тема: «Проверка статистических гипотез»
Компания по производству безалкогольных напитков предполагает выпустить на рынок новую модификацию популярного напитка, в котором сахар заменен сукразитом. Компания хотела бы быть уверенной в том, что не менее 70% ее потребителей предпочтут новую модификацию напитка. Новый напиток был предложен на пробу 2000 человек, и 1422 из них сказали, что он вкуснее старого. Может ли компания отклонить предложение о том, что только 70% всех ее потребителей предпочтут новую модификацию напитка старой? Уровень значимости 0,01.
Задача 5. Тема: «Критерий согласия Пирсона»
По результатам наблюдений определены частоты
попадания случайной величины X в заданные интервалы
. Рассчитать по данному статистическому ряду оценки параметров
и
, пользуясь формулами
где n — объем выборки;
k — число интервалов группировки;
— середина j–го интервала.
С помощью критерия согласия Пирсона на уровне значимости
выяснить, можно ли считать случайную величину X нормально распределенной с параметрами
и s, рассчитанными по выборке.
Задача 6. Тема: «Ранговая корреляция».
По заданной таблице рангов найти выборочный коэффициент ранговой корреляции Спирмена и проверить значимость полученного результата при α = 0,05.
Десять спортсменов-бегунов проранжированы по двум признакам: X – рост спортсмена, Y – скорость бега.
Задача 7. Тема: «Линейная корреляция и регрессия».
Для приведенных исходных данных постройте диаграмму рассеяния и определите по ней характер зависимости. Рассчитайте выборочный коэффициент корреляции Пирсона, проверьте его значимость при α = 0,05. Запишите уравнение регрессии и дайте интерпретацию полученных результатов.
Исследуется связь между общим весом некоторого растения (X, %) и весом его семян (Y, г) на основе выборочных данных.
Список использованной литературы
1. Булдык Г.М. Теория вероятностей и математическая статистика. - Мн.: Высшая школа, 1989 г., 286 с.
2. Булдык Г.М., Ковальчук В.Н. Теория вероятностей и математическая статистика. Практикум. Часть 1. - Мн.: БГЭУ, 1999 г. - 54 с.
3. Гмурман В.Е., Руководство к решению задач по теории вероятностей и математической статистике. М., «Высшая школа», 1979 г.
4. Гмурман В.Е., Теория вероятностей и математическая статистика. М., «Высшая школа», 1977 г.
5. Кочетков Е. ., Смерчинская С.О. Теория вероятностей, в задачах и упражнениях. Москва 2005
6. Кремер Н.Ш. Теория вероятностей и математическая статистика. -М.: ЮНИТИ-ДАНА, 2001