Вход

Исследование методов управления портфелем ценных бумаг на основе машинного обучения

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 492740
Дата создания 2023
Мы сможем обработать ваш заказ (!) 7 октября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
2 930руб.
КУПИТЬ

Описание

Оригинал документа в pdf, конвертация в Word автоматическая (в word могут быть недочеты, которые вы легко исправите самостоятельно)

В настоящей работе рассматриваются вопросы применения современных методов машинного обучения для управления портфелем ценных бумаг на фондовом рынке, в частности для прогнозирования стоимости. Актуальность тематики подчеркивается важностью учета динамики текущей рыночной ситуации при проведении аналитических исследований, составлении экономических прогнозов, а также при принятии финансовых решений. Увеличение объема различных факторов, влияющих на цену актива, предполагает необходимость работы с большими данными и подчёркивает важность применения методов искусственного интеллекта. В качестве математического аппарата для проведения исследований выбраны различные методы глубокого обучения и машинного обучения с учителем и с подкреплением. Для отработки указанных методов первой модельной задачей является осуществление краткосрочного прогноза котировок акций с целью принятия торговых решений, а второй - управление портфелем, состоящим из ценных бумаг одного эмитента. В статье затрагиваются важные вопросы формирования обучающих данных с дальнейшим выбором наиболее информативных признаков на основе биржевой информации и различных индикаторов. Для оптимизации исходных данных используется подход, заключающийся в удалении сильно коррелирующих между собой признаков и применении алгоритма RFE (Recursive feature elimination). Проводятся экспериментальные исследования с применением модели линейной регрессий, метода опорных векторов, алгоритма CatBoost, нейронной сети LSTM и алгоритма A2C. Даются выводы о возможности применения полученных результатов при принятии краткосрочных финансовых решений, а также выводы о работе алгоритма обучения с подкреплением, выполняющего функцию управления портфелем ценных бумаг.

В настоящее время происходит активное развитие методов искусственного интеллекта и их применение в различных прикладных областях, начиная с сельского хозяйства и заканчивая космическими исследованиями. В связи с нарастающей востребованностью важное место занимает управление портфелем ценных бумаг на фондовом рынке, в первую очередь это оценка и прогнозирование стоимости. Необходимо отметить, что прогноз ценовых котировок используется как для принятия финансовых решений, так и для оценки различных экономических показателей, т.к. фондовый рынок отражает состояние отдельных отраслей и всей экономики в целом. Увеличение объема биржевых данных и потока информации, влияющего на цены активов, привлекает в эту сферу как технических специалистов, так и ученых в области искусственного интеллекта и обработки больших данных.

Настоящая работа посвящена исследованию современных методов машинного обучения, направленных на решение сложной и актуальной задачи управления портфелем ценных бумаг на основе прогнозирования динамики фондовых рынков. В качестве модельной задачи рассматривается формирование краткосрочного прогноза котировок акций с целью принятия торговых решений, а также управление портфелем, состоящим из ценных бумаг одного эмитента. Для решения данной задачи, как правило, применяют два типа алгоритмов машинного обучения: обучение с учителем и обучение с подкреплением. В настоящем исследовании предполагается с применением языка программирования Python разработать модели на базе обоих типов алгоритмов. На основе имеющихся биржевых котировок, рассматривается задача извлечения дополнительной информации и информативных признаков. Исследуются вопросы оптимизации информативных признаков с целью формирования качественной обучающей выборки. Отдельный раздел посвящен проведению экспериментов с применением модели линейной регрессий, метода опорных векторов, алгоритма CatBoost, а также построении и использовании нейронной сети LSTM и алгоритма A2C. Методы исследования

Структура работы

В первой главе дана постановка задачи, введение в рынок ценных бумаг

и обзор классических методов решения задачи управления портфелем ценных бумаг.

Во второй главе исследованы и формально описаны современные методы машинного обучения, используемые в частности для решения задачи управления портфелем ценных бумаг.

В третьей главе предложены методы и алгоритмы для управления портфелем ЦБ и прогнозирования стоимости акций. В четвёртой главе исследуются практические вопросы построения соответствующей информационной системы, проводятся экспериментальные исследования.

Содержание

Оглавление

Список сокращений .................................................................................... 3

Введение ..................................................................................................... 4 1 Постановка и исследование методов решения задачи управления

портфелем ценных бумаг ..................................................................................... 7 1.1 Введение в рынок ценных бумаг ...................................................... 7 1.2 Постановка задачи ............................................................................. 9 1.3 Исследование современных методов и подходов к решению

задачи ............................................................................................................... 10

2 Современные методы машинного обучения и их применение для

решения задачи управления портфелем ЦБ ...................................................... 15 2.1 Модели обучения с учителем ......................................................... 15

2.2 Модели глубокого обучения ........................................................... 17

2.3 Модели обучения с подкреплением ............................................... 22

3 Разработка метода решения задачи ...................................................... 27

3.1 Алгоритмы для построения моделей прогнозирования стоимости ценных бумаг ................................................................................................... 27

3.2 Алгоритм для построения модели управления портфелем ценных бумаг ................................................................................................................ 34

4 Практическое исследование решения задачи....................................... 37 4.1 Инструменты и подготовка данных ............................................... 37 4.2 Построение и обучение моделей с учителем ................................. 45 4.3 Построение и обучение модели с подкреплением......................... 51

Вывод ........................................................................................................ 55 Список используемых источников .......................................................... 57 Приложения .............................................................................................. 60

Список литературы

1. Кравец Д.А. Исследование методов прогнозирования стоимости ценных

бумаг на основе машинного обучения. // Информационнотелекоммуникационные технологии и математическое моделирование высокотехнологичных систем: материалы Всероссийской конференции с международным участием. Москва, РУДН, 19–23 апреля 2021 г. — Москва: РУДН, 2021. — с. 218-223.

2. Алехин Б.И. Рынок ценных бумаг. Введение в фондовые операции. //

«Финансы и статистика», Москва, 1996. — 160 с.

3. Швагер Джек Д. Технический анализ. Полный курс. (Technical Analysis):

Пер. с англ. — М.: Альпина Паблишер, 2017, — 880 с. — ISBN: 978-5-9614-3737-9

4. Richard S. Sutton, Andrew G. Barto. Reinforcement Learning, second edition: An Introduction (Adaptive Computation and Machine Learning series) // Bradford Books; second edition, 2018. — 552 с. — ISBN-13: 978-0262039246

5. Хасти Т., Тибришани Р., Фридман Д. Основы статистического обучения: интеллектуальный анализ данных, логический вывод и прогнозирование. Пер. с англ. — М.: Издательский дом «Вильямс», 2020 — с. 65-78 — ISBN: 978-5-907144-42-2

6. Vikramkumar, Vijaykumar B, Trilochan. Bayes and Naive Bayes Classifier. [Электронный ресурс] // Andhra Pradesh: India, Rajiv Gandhi University of Knowledge Technologies, 2014 — arXiv.org. 2001. URL: https://arxiv.org/abs/cond-mat/0106542 (дата обращения: 05.03.2021).

7. Mello A., Support Vector Machine: Theory and Practice [Электронный ресурс] // Towards Data Science, Medium, 2012. URL: https://towardsdatascience.com/support-vector-machine-theory-and-practice-13c2cbef1980 (дата обращения: 12.03.2021). — 2020.

8. Gulin.A: Yandex. Overview of CatBoost [Электронный ресурс] // CatBoost Documentation URL: https://catboost.ai/docs/concepts/ (дата обращения: 14.03.2021).

9. Schmidt R.M. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview [Электронный ресурс] // Tübingen: Germany, Eberhard-Karls-University Tübingen, 2019 — arXiv.org. 2001. URL: https://arxiv.org/abs/1912.05911 (дата обращения: 15.03.2021).

10. Olah С. Understanding LSTM Networks [Электронный ресурс] // GitHub Pages, GitHub. 2008. URL: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (дата обращения: 28.03.2021) — 2015.

11. Yoon C., Understanding Actor Critic Methods and A2C [Электронный ресурс] // Towards Data Science, Medium, 2012. URL: https://towardsdatascience.com/understanding-actor-critic-methods-

931b97b6df3f (дата обращения: 12.03.2021). — 2019.

12. Kohli N., Feature Extraction & Stock Prediction using Machine Learning:

Streamlit based Application [Электронный ресурс] // Medium, 2012. URL: https://medium.com/@Nikhilkohli1/extracting-features-for-stock-prediction-streamlit-based-application-a97afc55d926 (дата обращения: 02.04.2021). — 2020.

13. Turin A., Machine Learning for Day Trading [Электронный ресурс] // Towards Data Science, Medium, 2012. URL: https://towardsdatascience.com/machine-learning-for-day-trading-

27c08274df54 (дата обращения: 07.04.2021). — 2019.

14. Kuhn M., Recursive Feature Elimination [Электронный ресурс] // GitHub

Pages, GitHub. 2008. URL: https://topepo.github.io/caret/recursive-feature-elimination.html (дата обращения: 12.04.2021) — 2019.

15. Botchkarev A., Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology [Электронный ресурс] // Toronto: Ontario, Canada. Ryerson University,

2018. — arXiv.org. 2001. URL: https://arxiv.org/abs/1809.03006 (дата обращения: 16.04.2021).

16. Moni R., Reinforcement Learning algorithms — an intuitive overview [Электронный ресурс] // SmartLab AI, Medium, 2012. URL: https://smartlabai.medium.com/reinforcement-learning-algorithms-an-

intuitive-overview-904e2dff5bbc (дата обращения: 17.04.2021). — 2019.

17. Yang B., FinRL: A Deep Reinforcement Learning Library for Quantitative

Finance [Электронный ресурс] // GitHub repository, GitHub. 2008. URL: https://github.com/AI4Finance-LLC/FinRL (дата обращения: 18.04.2021) — 2021.

18. Theate T., Ernst D., An Application of Deep Reinforcement Learning to Algorithmic Trading [Электронный ресурс] // Liege: Belgium, University of Liege, 2020. — arXiv.org. 2001. URL: https://arxiv.org/abs/2004.06627 (дата обращения: 18.04.2021).

19. Cournapeau D. и др., Scikit-learn Documentation Supervised learning [Электронный ресурс]: // Scikit-learn, 2007. URL: https://scikit-learn.org/stable/supervised_learning.html (дата обращения: 14.04.2021).

20. Hill A. и др., Stable Baselines Documentation [Электронный ресурс]: // Stable Baselines, 2018. URL: https://stable-baselines.readthedocs.io/en/master/modules/a2c.html (дата обращения: 19.04.2021).

Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00455
© Рефератбанк, 2002 - 2024