Рекомендуемая категория для самостоятельной подготовки:
Решение задач*
Код |
419140 |
Дата создания |
2019 |
Страниц |
7
|
Мы сможем обработать ваш заказ (!) 27 декабря в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
1.19. В вакууме распространяется плоская электромагнитная волна
,
.
Некоторые параметры волны заданы в таблице 1. Определить величины, а в случае векторов также и направление характеристик волны, указанных в по-следнем столбце таблицы. Сделать рисунок с указанием направления векторов относительно декартовой системы координат. Принятые обозначения: T - период, n - частота, l - длина волны, I - интенсивность волны, w0 и - плотность энергии и вектор плотности потока энергии в точке в момент времени t = 0, - однонаправленность векторов, - противоположное направление векторов.
2.19. По условию предыдущей задачи найти разность фаз электромагнитной волны в точках и модуль вектора напряженности во второй точке в момент времени t = 30 нс.
3.19. Два источника излучают линейно поляризованные электромаг-нитные волны. Вдали от источников в некоторой рассматриваемой ограниченной области поле излучения можно записать в виде плоских волн, распространяющихся в положительном направлении оси Ox:
,
,
где циклическая частота w = 3,14.106 рад/с, а амплитуды и начальные фазы j1 и j2 заданы в таблице вариантов 2. Изобразить графически в плоскости Oyz положение электрического вектора результирующей электромагнитной волны в точке с координатой x0 в последовательные моменты времени , n = 0, 1, 2, …, 11, где T - период волны (см. пример 3). Определить тип поляризации результирующей волны.
4.19. При прохождении поляризованного монохроматического света через пластинку кварца его плоскость поляризации поворачивается на b = 22,5º на каждом миллиметре толщины. Какой наименьшей толщины необходимо взять кварцевую пластину, помещенную между двумя одинаково направленными поляризаторами, чтобы интенсивность прошедшего через эту систему света была максимальной?
5.19. Пучок лазерного излучения с l = 632,8 нм падает нормально на преграду с двумя узкими щелями, расстояние между которыми равно 1 мм. На экране, установленном на расстоянии L = 100 см за преградой, наблюдается система интерференционных полос. На каком расстоянии от ее центра находится третий максимум?
6.19. Четыре одинаковые линейные антенны расположены параллельно друг другу так, что их оси находятся в вершинах квадрата со стороной d.
7
6 8
3 2
5 1
4 1
4 2
3
Рис. 1. Направления лучей (распро-странения волн от линейных антенн) к удаленным точкам наблюдения. Плоскость рисунка перпендикулярна антеннам. Антенны излучают радиоволны на частоте n = 3.107 Гц с начальными фазами j0i, указанными в таблице ва-риантов 3. Определить интенсивность излучения на больших расстояниях от антенн в точке, направление на которую задано лучом, указанным в таблице вариантов 3 и на рис. 1. При-нять, что интенсивности излучений, регистрируемые в точке наблюдения от каждой отдельно работающей ан-тенны, равны соответственно I1, I2, I3, I4, сторона квадрата .
7.19. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 - длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
8.19. Излучатель, описанный в предыдущей задаче, помещен в ионизованную газовую среду (типа ионосферы), в которой показатель преломления изменяется в зависимости от частоты по закону , где w0 = 3,14.107 рад/с - так называемая плазменная частота этой среды. Найти фазовые скорости и длины волн заданных гармонических компонент.
Методом графического сложения определить форму сигнала E(t,L), регистрируемого приемником, расположенным на расстоянии L = NlСР в направлении распространения волны. Для удобства выполнить построение для отрезка времени от 0 до 2Т. Т и lСР - период и длина волны в данной среде гармонической компоненты с частотой w1. Эффектами поглощения пренебречь. Рекомендуется выполнить задание на компьютере с использованием математических программных средств
Введение
1.19. В вакууме распространяется плоская электромагнитная волна
,
.
Некоторые параметры волны заданы в таблице 1. Определить величины, а в случае векторов также и направление характеристик волны, указанных в по-следнем столбце таблицы. Сделать рисунок с указанием направления векторов относительно декартовой системы координат. Принятые обозначения: T - период, n - частота, l - длина волны, I - интенсивность волны, w0 и - плотность энергии и вектор плотности потока энергии в точке в момент времени t = 0, - однонаправленность векторов, - противоположное направление векторов.
2.19. По условию предыдущей задачи найти разность фаз электромагнитной волны в точках и модуль вектора напряженности во второй точке в момент времени t = 30 нс.
3.19. Два источника излучают линейно поляриз ованные электромаг-нитные волны. Вдали от источников в некоторой рассматриваемой ограниченной области поле излучения можно записать в виде плоских волн, распространяющихся в положительном направлении оси Ox:
,
,
где циклическая частота w = 3,14.106 рад/с, а амплитуды и начальные фазы j1 и j2 заданы в таблице вариантов 2. Изобразить графически в плоскости Oyz положение электрического вектора результирующей электромагнитной волны в точке с координатой x0 в последовательные моменты времени , n = 0, 1, 2, …, 11, где T - период волны (см. пример 3). Определить тип поляризации результирующей волны.
4.19. При прохождении поляризованного монохроматического света через пластинку кварца его плоскость поляризации поворачивается на b = 22,5º на каждом миллиметре толщины. Какой наименьшей толщины необходимо взять кварцевую пластину, помещенную между двумя одинаково направленными поляризаторами, чтобы интенсивность прошедшего через эту систему света была максимальной?
5.19. Пучок лазерного излучения с l = 632,8 нм падает нормально на преграду с двумя узкими щелями, расстояние между которыми равно 1 мм. На экране, установленном на расстоянии L = 100 см за преградой, наблюдается система интерференционных полос. На каком расстоянии от ее центра находится третий максимум?
6.19. Четыре одинаковые линейные антенны расположены параллельно друг другу так, что их оси находятся в вершинах квадрата со стороной d.
7
6 8
3 2
5 1
4 1
4 2
3
Рис. 1. Направления лучей (распро-странения волн от линейных антенн) к удаленным точкам наблюдения. Плоскость рисунка перпендикулярна антеннам. Антенны излучают радиоволны на частоте n = 3.107 Гц с начальными фазами j0i, указанными в таблице ва-риантов 3. Определить интенсивность излучения на больших расстояниях от антенн в точке, направление на которую задано лучом, указанным в таблице вариантов 3 и на рис. 1. При-нять, что интенсивности излучений, регистрируемые в точке наблюдения от каждой отдельно работающей ан-тенны, равны соответственно I1, I2, I3, I4, сторона квадрата .
7.19. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 - длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
8.19. Излучатель, описанный в предыдущей задаче, помещен в ионизованную газовую среду (типа ионосферы), в которой показатель преломления изменяется в зависимости от частоты по закону , где w0 = 3,14.107 рад/с - так называемая плазменная частота этой среды. Найти фазовые скорости и длины волн заданных гармонических компонент.
Методом графического сложения определить форму сигнала E(t,L), регистрируемого приемником, расположенным на расстоянии L = NlСР в направлении распространения волны. Для удобства выполнить построение для отрезка времени от 0 до 2Т. Т и lСР - период и длина волны в данной среде гармонической компоненты с частотой w1. Эффектами поглощения пренебречь. Рекомендуется выполнить задание на компьютере с использованием математических программных средств
Фрагмент работы для ознакомления
1.19. В вакууме распространяется плоская электромагнитная волна
,
.
Некоторые параметры волны заданы в таблице 1. Определить величины, а в случае векторов также и направление характеристик волны, указанных в по-следнем столбце таблицы. Сделать рисунок с указанием направления векторов относительно декартовой системы координат. Принятые обозначения: T - период, n - частота, l - длина волны, I - интенсивность волны, w0 и - плотность энергии и вектор плотности потока энергии в точке в момент времени t = 0, - однонаправленность векторов, - противоположное направление векторов.
2.19. По условию предыдущей задачи найти разность фаз электромагнитной волны в точках и модуль вектора напряженности во второй точке в момент времени t = 30 нс.
3.19. Два источника излучают линейно поляризованные электромаг-нитные волны. Вдали от источников в некоторой рассматриваемой ограниченной области поле излучения можно записать в виде плоских волн, распространяющихся в положительном направлении оси Ox:
,
,
где циклическая частота w = 3,14.106 рад/с, а амплитуды и начальные фазы j1 и j2 заданы в таблице вариантов 2. Изобразить графически в плоскости Oyz положение электрического вектора результирующей электромагнитной волны в точке с координатой x0 в последовательные моменты времени , n = 0, 1, 2, …, 11, где T - период волны (см. пример 3). Определить тип поляризации результирующей волны.
4.19. При прохождении поляризованного монохроматического света через пластинку кварца его плоскость поляризации поворачивается на b = 22,5º на каждом миллиметре толщины. Какой наименьшей толщины необходимо взять кварцевую пластину, помещенную между двумя одинаково направленными поляризаторами, чтобы интенсивность прошедшего через эту систему света была максимальной?
5.19. Пучок лазерного излучения с l = 632,8 нм падает нормально на преграду с двумя узкими щелями, расстояние между которыми равно 1 мм. На экране, установленном на расстоянии L = 100 см за преградой, наблюдается система интерференционных полос. На каком расстоянии от ее центра находится третий максимум?
6.19. Четыре одинаковые линейные антенны расположены параллельно друг другу так, что их оси находятся в вершинах квадрата со стороной d.
7
6 8
3 2
5 1
4 1
4 2
3
Рис. 1. Направления лучей (распро-странения волн от линейных антенн) к удаленным точкам наблюдения. Плоскость рисунка перпендикулярна антеннам. Антенны излучают радиоволны на частоте n = 3.107 Гц с начальными фазами j0i, указанными в таблице ва-риантов 3. Определить интенсивность излучения на больших расстояниях от антенн в точке, направление на которую задано лучом, указанным в таблице вариантов 3 и на рис. 1. При-нять, что интенсивности излучений, регистрируемые в точке наблюдения от каждой отдельно работающей ан-тенны, равны соответственно I1, I2, I3, I4, сторона квадрата .
7.19. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 - длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
8.19. Излучатель, описанный в предыдущей задаче, помещен в ионизованную газовую среду (типа ионосферы), в которой показатель преломления изменяется в зависимости от частоты по закону , где w0 = 3,14.107 рад/с - так называемая плазменная частота этой среды. Найти фазовые скорости и длины волн заданных гармонических компонент.
Методом графического сложения определить форму сигнала E(t,L), регистрируемого приемником, расположенным на расстоянии L = NlСР в направлении распространения волны. Для удобства выполнить построение для отрезка времени от 0 до 2Т. Т и lСР - период и длина волны в данной среде гармонической компоненты с частотой w1. Эффектами поглощения пренебречь. Рекомендуется выполнить задание на компьютере с использованием математических программных средств
Список литературы
1.19. В вакууме распространяется плоская электромагнитная волна
,
.
Некоторые параметры волны заданы в таблице 1. Определить величины, а в случае векторов также и направление характеристик волны, указанных в по-следнем столбце таблицы. Сделать рисунок с указанием направления векторов относительно декартовой системы координат. Принятые обозначения: T - период, n - частота, l - длина волны, I - интенсивность волны, w0 и - плотность энергии и вектор плотности потока энергии в точке в момент времени t = 0, - однонаправленность векторов, - противоположное направление векторов.
2.19. По условию предыдущей задачи найти разность фаз электромагнитной волны в точках и модуль вектора напряженности во второй точке в момент времени t = 30 нс.
3.19. Два источника излучают линейно поляризованные электромаг-нитные волны. Вдали от источников в некоторой рассматриваемой ограниченной области поле излучения можно записать в виде плоских волн, распространяющихся в положительном направлении оси Ox:
,
,
где циклическая частота w = 3,14.106 рад/с, а амплитуды и начальные фазы j1 и j2 заданы в таблице вариантов 2. Изобразить графически в плоскости Oyz положение электрического вектора результирующей электромагнитной волны в точке с координатой x0 в последовательные моменты времени , n = 0, 1, 2, …, 11, где T - период волны (см. пример 3). Определить тип поляризации результирующей волны.
4.19. При прохождении поляризованного монохроматического света через пластинку кварца его плоскость поляризации поворачивается на b = 22,5º на каждом миллиметре толщины. Какой наименьшей толщины необходимо взять кварцевую пластину, помещенную между двумя одинаково направленными поляризаторами, чтобы интенсивность прошедшего через эту систему света была максимальной?
5.19. Пучок лазерного излучения с l = 632,8 нм падает нормально на преграду с двумя узкими щелями, расстояние между которыми равно 1 мм. На экране, установленном на расстоянии L = 100 см за преградой, наблюдается система интерференционных полос. На каком расстоянии от ее центра находится третий максимум?
6.19. Четыре одинаковые линейные антенны расположены параллельно друг другу так, что их оси находятся в вершинах квадрата со стороной d.
7
6 8
3 2
5 1
4 1
4 2
3
Рис. 1. Направления лучей (распро-странения волн от линейных антенн) к удаленным точкам наблюдения. Плоскость рисунка перпендикулярна антеннам. Антенны излучают радиоволны на частоте n = 3.107 Гц с начальными фазами j0i, указанными в таблице ва-риантов 3. Определить интенсивность излучения на больших расстояниях от антенн в точке, направление на которую задано лучом, указанным в таблице вариантов 3 и на рис. 1. При-нять, что интенсивности излучений, регистрируемые в точке наблюдения от каждой отдельно работающей ан-тенны, равны соответственно I1, I2, I3, I4, сторона квадрата .
7.19. Некоторый излучатель формирует плоскую электромагнитную волну в вакууме Е(t,x), уравнение которой при x = 0 можно представить в виде суперпозиции двух гармонических функций, приведенных в таблице вариантов 4. Методом графического сложения определить форму результирующего сигнала Е(t,0) и пространственную форму волны Е(0,x) на отрезке от x1 = 0 до x2 = 2l1 в начальный момент времени. Здесь l1 - длина волны гармонической компоненты с частотой w1, значение константы E0 считать известным. Допускается выполнение этой и следующей задачи на компьютере с использованием математических программных систем, таких как Mathcad.
8.19. Излучатель, описанный в предыдущей задаче, помещен в ионизованную газовую среду (типа ионосферы), в которой показатель преломления изменяется в зависимости от частоты по закону , где w0 = 3,14.107 рад/с - так называемая плазменная частота этой среды. Найти фазовые скорости и длины волн заданных гармонических компонент.
Методом графического сложения определить форму сигнала E(t,L), регистрируемого приемником, расположенным на расстоянии L = NlСР в направлении распространения волны. Для удобства выполнить построение для отрезка времени от 0 до 2Т. Т и lСР - период и длина волны в данной среде гармонической компоненты с частотой w1. Эффектами поглощения пренебречь. Рекомендуется выполнить задание на компьютере с использованием математических программных средств
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00347