Вход

Комплект технологической документации по оптической контактной литографии

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 371457
Дата создания 08 января 2018
Страниц 55
Мы сможем обработать ваш заказ 26 октября в 13:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
990руб.
КУПИТЬ

Описание

Введение
Оптическая литография объединяет в себе такие области науки, как оптика, механика и фотохимия. При любом типе печати ухудшается резкость края (рис. 1). Проецирование двумерного рисунка схемы ведет к уменьшению крутизны края, поэтому нужен специальный резист, в котором под воздействием синусоидально модулированной интенсивности пучка будет формироваться прямоугольная маска для последующего переноса изображения травлением. Если две щели размещены на некотором расстоянии друг от друга, то неэкспонируемый участок частично экспонируется по следующим причинам:
1) дифракция;
2) глубина фокуса объектива;
3) низкоконтрастный резист;
4) стоячие волны (отражение от подложки);
5) преломление света в резисте.
...

Содержание

Введение
Оптическая литография объединяет в себе такие области науки, как оптика, механика и фотохимия. При любом типе печати ухудшается резкость края (рис. 1). Проецирование двумерного рисунка схемы ведет к уменьшению крутизны края, поэтому нужен специальный резист, в котором под воздействием синусоидально модулированной интенсивности пучка будет формироваться прямоугольная маска для последующего переноса изображения травлением. Если две щели размещены на некотором расстоянии друг от друга, то неэкспонируемый участок частично экспонируется по следующим причинам:
1) дифракция;
2) глубина фокуса объектива;
3) низкоконтрастный резист;
4) стоячие волны (отражение от подложки);
5) преломление света в резисте.

Введение

Введение
Оптическая литография объединяет в себе такие области науки, как оптика, механика и фотохимия. При любом типе печати ухудшается резкость края (рис. 1). Проецирование двумерного рисунка схемы ведет к уменьшению крутизны края, поэтому нужен специальный резист, в котором под воздействием синусоидально модулированной интенсивности пучка будет формироваться прямоугольная маска для последующего переноса изображения травлением. Если две щели размещены на некотором расстоянии друг от друга, то неэкспонируемый участок частично экспонируется по следующим причинам:
1) дифракция;
2) глубина фокуса объектива;
3) низкоконтрастный резист;
4) стоячие волны (отражение от подложки);
5) преломление света в резисте.

Фрагмент работы для ознакомления

Дифракционные эффекты, препятствующие использованию видимого и даже коротковолнового УФ - света, не являются помехой для рентгеновских лучей, длина волны которых менее 1 нм. Системы рентгеновской литографии работают почти также, как и системы оптической литографии. Однако существенным недостатком являются их малая производительность, высокая стоимость и невысокая чувствительность рентгенорезиста. Для компенсации последнего необходимо получение рентгеновских лучей с высокой энергией. Проблемой является также большая(1000 об/мин) скорость вращения мишени – массивного металлического диска, на кромку которого нанесён материал мишени. Высокие скорости вращения диска необходимы для охлаждения материала мишени, однако из-за возникающей вибрации в конструкции системы, снижается точность совмещения рисунка ИМС.Электронно-лучевая литография.Электронно-лучевым методом можно легко получать линии шириной 0, 25 мкм. Возможности электронно-лучевых систем очень высоки: точность совмещения 0, 03 мкм, минимальный размер – 1 мкм. В отличие от других методов литографии электронно-лучевой метод не требует масок или шаблонов, позволяет быстро перестраивать производство без существенных капитальных затрат, так как не надо изготавливать фотошаблоны, а изменения в топологию ИМС можно вносить путём изменения программы управления от ЭВМ. Электронно-лучевой метод содержит меньшее число технологических операций, что снижает трудоёмкость процесса в целом, однако, трудоёмкость некоторых операций высока. На пример, время, затрачиваемое на экспонирование одной пластины 100 мм диаметром, составляет порядка10-15 мин.Электронно-лучевое экспонирование выполняется в вакуумных установках и основано на нетермическом взаимодействии ускоренных электронов с электронорезистом. В качестве последнего применяют различные полимерные материалы, в том числе и Фоторезисты. Предпочтение отдаётся специальным электронорезистам, нечувствительным к видимому и УФ - излучениям. Электронорезист также должен иметь низкое давление собственных паров и не должен образовывать химических соединений, загрязняющих вакуумную камеру установки.Электронорезисты подразделяют на позитивные и негативные в зависимости от того разрывает поток падающих электронов химические связи в их структуре или, наоборот, укрепляет (структурирует) молекулы электронорезиста. В каждом конкретном полимере преобладает тот или другой эффект. Степень структурирования и деструкции позитивных элетронорезистов прямо пропорциональна дозе облучения, т.е. величине заряда электронов на единицу площади. Структурные изменения в электронорезисте произойдут полностью, если длина свободного пробега электронов будет больше толщины слоя электронорезиста.Установки электронно-лучевой литографии обеспечивают ускоряющее напряжение порядка 104В, что соответствует длине волны 50-100 нм. Чем больше ускоряющее напряжение, тем меньше длина волны и меньше минимальный размер элемента. Технически считается возможным получение потока электронов с длиной волны менее 0, 1 нм, т.е. возможна разрешающая способность, близкая к 10-4 мкм.Используют два метода электронно-лучевой литографии: сканирующую и проекционную литографию.Сканирующая электронно-лучевая литография – это обработка сфокусированным единичным пучком поверхности пластины, покрытой электронорезистом. Для экспонирования в этом случае применяют растровые электронные микроскопы (РЭМ) или электронно-лучевые ускорители (ЭЛУ). РЭМ позволяет получать линии рисунка шириной 0, 1 мкм. При управлении лучом от ЭВМ применяют векторное сканирование. В этом случае электронный луч сканирует только запрограммированный участок, выключаясь в местах перехода от одного элемента к другому. Для увеличения площади экспонирования наряду с перемещением луча осуществляют управляемое от ЭВМ перемещение столика, на котором расположена пластина с электронорезистом. Совмещение топологических слоёв ИМС выполняется автоматически с помощью реперных меток, отражаясь от которых с отклонением, электронный луч даёт сигнал ЭВМ о несовмещении, в результате ЭВМ изменяет положение пучка. Точность совмещения составляет ±0, 5 мкм.Проекционная электронно-лучевая литография – это электронная проекция всего изображения, в результате которой на электронорезист передаётся одновременно весь рисунок фотошаблона. В качестве последнего используют трёхслойный катод, который выполняет роль шаблона и одновременно является источником электронов. Рисунок шаблона в масштабе М 1:1 выполняют на слое диоксида титана, который непрозрачен для УФ - излучения. Поверх рисунка наносят плёнку палладия, обладающую высокими фотоэмиссионными свойствами. Фотокатод со стороны основы, выполненной из кварца, облучают УФ - излучением. Участки поверхности, покрытые плёнкой палладия, под действием УФ - излучения эмитируют электроны, которые ускоряясь в электрическом поле с помощью фокусирующей системы, проецируют изображение без искажения. Отклоняющая система установки позволяет смещать изображение и, тем самым, проводить совмещение с точностью ±0, 25 мкм.Проекционный метод имеет хорошее разрешение, позволяющее получать линии шириной 1 мкм, большую до ±50 мкм глубину резкости. Производительность метода сравнима с фотолитографией.К недостаткам метода можно отнести сложность изготовления фотокатодов и сложность подсоединения детекторов для совмещения.Описание технологического процессаУважаемый преподаватель курсовая скачена из интернета и студентом даже не прочитанаРис. 5 Схема процесса контактной фотолитографииПроцесс контактной фотолитографии состоит из ряда пунктов представленных на рисунке 5.подготовка поверхности исходной подложки;нанесение на подложку слоя фоторезиста;первая сушка фоторезиста — пленкообразование;совмещение рисунка фотошаблона с рисунком на исходной подложке (если процесс фотолитографии повторяется с изменением; фотошаблона);экспонирование фоторезиста контактным способом;проявление фоторезиста;вторая сушка фоторезиста — полимеризация;контроль рельефа рисунка в пленке фоторезиста;травление подложки;снятие пленки фоторезиста с поверхности подложки;контроль рельефа рисунка в подложке.1. Начинаем процесс с очистки поверхности пластин от загрязнений способных влиять на структуру фоторезиста:молекулярные загрязнения – органические (масла, жиры, остатки фоторезиста, растворителей и др.), механические (пыль, абразивные частицы, ворсинки) и плёнки химических соединений (окислы, сульфиды, нитриды и др.);ионные загрязнения – соли, основания и кислоты из остатков травильных растворов, химически связанные с поверхностью пластины;атомарные загрязнения – атомы тяжёлых металлов, Ag, Cu, Fe, осевшие на поверхность пластины из химических реактивов в виде микрозародышей. Химическую очистку от загрязнений осуществляют путём обработки в органических растворителях, кислотах и деионизованной воде. Альтернативой органическим растворителям являются перекисно-аммиачные смеси, перекись водорода окисляет органические загрязнения и переводит их в растворимое состояние. Качество такой отмывки выше ещё и потому, что водные растворы аммиака способны к комплексообразованию с ионами меди, серебра и др.Процесс отмывки полупроводниковых пластин деионизованной водой ведем, в аппарате OSTEC ADT 976 постоянно измеряя электрическое сопротивление воды. По мере снижения концентрации примесей сопротивление воды постепенно повышается. При установлении постоянного сопротивления воды процесс отмывки считаем законченным.1.1 Качество отмывки определяем в темном поле микроскопа Nikon Eclipse L200А при увеличении в 300х по числу светящихся точек. 2. Нанесение фоторезистаНаибольшее распространение получило центрифугирование, позволяющее использовать несложные устройства с центрифугой. Толщина плёнки фоторезиста зависит от вязкости, времени нанесения, скорости вращения центрифуги, температуры и влажности среды. Плёнка фоторезиста должна быть равномерна (не хуже ±10%) по толщине и иметь хорошую адгезию к подложке. Последнего добиваются путём предварительного отжига пластин при различных температурах в зависимости от материала покрытия: SiO2 - 900-10000С в атмосфере кислорода, примесносиликатное стекло – 5000С в атмосфере кислорода, Al – отжиг в аргоне при 3000С.Применение пульверизации для нанесения фоторезиста позволяет автоматизировать процесс, однако связано с большим расходом материала и более сложным контролем за толщиной покрытия. Метод окунания применяют редко, так как, несмотря на простоту и возможность ручного исполнения он не даёт воспроизводимых результатов.После очистки наносим на пластину слой позитивного фоторезиста фп - 383 толщиной 1.0 мкм. отфильтрованного и разбавленного до степени вязкости (6.0 cCm). Нанесение фоторезиста производим методом центрифугирования в аппарате OSTEC EVG®101, наносим 6-10 капель фоторезиста в центр пластины и распределяем по поверхности при скорости вращения центрифуги 3800 об./мин в течение 30 сек.3. Первая сушкаНазначение первой сушки фоторезиста состоит в удалении растворителя, уплотнения и уменьшения внутренних напряжений в плёнке, что улучшает адгезию фоторезиста к подложке. Используют три метода сушки: конвективная, ИК-сушка – нагрев от лампы или спирали, и СВЧ - сушка – нагрев за счёт поглощения энергии СВЧ - поля. Последние два метода предпочтительны, так как осуществляют нагрев от подложки и, тем самым, обеспечивают полное удаление растворителя.После обработки на центрифуге фоторезист сушим: в таре при температуре 20 оС в течение 20 мин; в сушильном шкафу Sawatec HP 150 при температуре 97 оС в течение 30 мин; в таре при температуре 20 оС в течение 35 мин.4. Совмещение пластины с фотошаблоном.В процессе изготовления кристалла ИМС фотолитография повторяется многократно, и необходимо каждый раз осуществлять совмещение рисунков топологии кристалла ИМС. Для совмещения используют сложные оптико-механические комплексы, позволяющие осуществлять совмещение визуально, вручную и автоматически. В первом случае сначала проводят совмещение строк и столбцов (так называемое грубо совмещение), а затем точное совмещение по реперным знакам с точностью в пределах 1 мкм. Автоматизированный способ совмещения обеспечивает точность совмещения до 0, 1 мкм. Оптическая система обеспечивает обзор при увеличении 40-80х и точное совмещение при 100-400хТопологию ранее проведенных процессов с фотомаской совмещаем через микроскоп в аппарате OSTEC EVG6205. ЭкспонированиеВ качестве источника излучения используют ртутные лампы характеризующиеся высокой интенсивностью излучения, параллельностью светового пучка и его равномерностью. Время экспонирования подбирают экспериментально и обычно в пределах 15-20 с.Облучение фоторезиста светом с длинной волны 400 нм. производим в том же аппарате что и совмещение OSTEC EVG6206. ПроявлениеХарактер и условия проявления фоторезиста зависят от его вида и условий предварительной сушки и экспонирования. Проявление позитивных фоторезистов связано с удалением облучённых участков при обработке в водных щелочных растворах 0, 3-0, 5% KOH или 1-2% растворе тринатрийфосфата. Проявление негативных фоторезистов – простое растворение необлучённых участков в органических растворителях (толуол, диоксан и др.). Особенностью проявления позитивных фоторезистов по сравнению с негативными является отсутствие набухания необлучённых участков. Поэтому они имеют большую разрешающую способность и меньшую зависимость её от толщины плёнки фоторезиста. После экспонирования удаляем не облученные участки фоторезиста проявителем УПФ-1Б, производим удаление в том же аппарате что и нанесение OSTEC EVG®101, в течение 30 секунд при температуре 20 оС и 1000 об./мин.7. ПолимеризацияДля придания устойчивости фоторезиста к последующему воздействию агрессивных сред проводят вторую сушку (так называемое термическое структурирование). При этом температуру увеличивают плавно с выдержкой через 10-20 мин.Полимеризацию фоторезиста проводим в сушильном шкафу Sawatec HP 150 при температуре 130 оС в течение 30мин.8. После проявления и полимеризации фоторезиста проводим 100% контроль фотомаски по размерам элементов в 3-4-х точках при увеличении 400х. микроскопом Nikon Eclipse L200А.9. Травление является завершающей стадией формирования рисунка элементов ИМС. При этом должно быть обеспечено минимальное искажение геометрических размеров, полное удаление материала на участках, не защищённых фоторезистом, высокая селективность воздействия травителя. Составы травителей на характерные слои структур ИМС: SiO2 и примесносиликатные стёкла – HF:NH4F:H2O=1:3:7; Si3N4 – H3PO4 в смеси с P2O5; Al – H3PO4:HNO3:CH3COOH:H2O=15:7:3:1.10. Снятие пленки фоторезистаЗаключительной операцией процесса фотолитографии является удаление фоторезиста, т.е. той фотомаски, которая выполнила свою задачу по формированию рисунка ИМС. Для этого возможно 3 способа: химическая деструкция – разрушение фоторезиста в серной кислоте или в смеси H2SOsub>4:H2O2=3:1; удаление в органических растворителях – ацетон, диметилформамид и др.; плазмохимическая деструкция – обработка в низкотемпературной ВЧ кислородной плазме при давлении 102-103 Па. Плазмохимическое травление (ПХТ) обладает значительным преимуществом как процесс более производительный, более эффективный, дешёвый и поддающийся автоматизации.Для удаления старой фотомаски, из фоторезиста ФП-383, пользуемся аппарат OSTEC EVG®101, и смывателем СПР-01Ф, удаление производим в течение 3 минут и 1000 об./мин. после чего промываем дистиллированной водой и сушим в центрифуге аппарата.11. после удаления фотомаски проводим контроль качества полученного рельефа рисунка в подложке микроскопом Nikon Eclipse L200А при увеличении 400х.Выбор и описание технологического оборудованияВнешний вид установки отмывки и сушки OSTEC ADT 976 представлен на рис. 6 а, принципиальная схема рис. 6 б. Установка последовательно осуществляет струйную обработку пластин деионизованной водой и сушку горячим азотом при одновременном центрифугировании.Блок отмывки и сушки выполнен в виде цилиндрической камеры 11, через дно которой введен вал центрифуги 14. Привод вращения центрифуги 10 содержит электродвигатель постоянного тока с регулируемым числом оборотов. На валу центрифуги закреплены держатели для 8и пластин. Камера закрывается сверху крышкой 8, которая в рабочем состоянии прижимается к торцу камеры через прокладку 7 с помощью вакуумной рубашки 6. В центре установки закреплен патрубок 9 с форсунками, через которые подается вода для струйной обработки и азот для сушки. Подача воды и азота управляется последовательным включением электромагнитных клапанов 3, в магистрали подачи азота установлен электрический подогреватель 4. В дне камеры выполнено дренажное отверстие 13, сбоку расположен патрубок для соединения с вытяжной вентиляцией 12. Патрубок 1 деионизированная вода патрубок 2 азот патрубок 5 вакуумУстановка совмещения и экспонирования OSTEC EVG620 представлена на рис 7, она состоит из модуля предварительного позиционирования рис 8, манипулятора рис. 9, калибратора рис 10, блока экспонирования рис 11.Модуль предварительного позиционирования рис 8 состоит из блока предварительного позиционирования a, транспортера b и манипулятора c. Механизм позиционирования подложек a выполнен в виде столика 2 с вакуумным зажимом, вокруг которого установлены 3и ролика, Ролики 1 не имеют собственного привода, ролик 3 получает вращение от электродвигателя. Вращение подложки контролирует датчик 4, определяя положение ее бокового среза, раструб воздушной завесы 11 не дает пыли подлетать к столику. После предварительного позиционирования рука 6 транспортера b накрывает подложку вакуумным захватом 8 подключенного к шлангу вакуума 5. Вращаясь на шарнире 7, рука транспортера устанавливает подложку на поворотный диск 10 манипулятора 9.421М3567810911abcРис. 8 Принципиальная схема модуля предварительного позиционирования уст. OSTEC EVG620Манипулятор рис. 9 обеспечивает перемещение подложки по ортогональным осям и ее поворот при совмещении с фотошаблоном. 12345678МММ224556610911Рис. 9 Принципиальная схема манипулятора установки OSTEC EVG620Внутри литого корпуса 1 установлен поворотный диск 7 с вакуумным зажимом, соединенный с механизмом вертикальных перемещений рис 10. Поворотный диск центрируется тремя подшипниками 5. Угловой поворот диска 7 производится электродвигателем 9, который по средствам тяги 6, и связанного с ней упора 11, поворачивает диск 7. Перемещение по оси X осуществляется с помощью электродвигателя 10, который по средствам тяги 6, и связанного с ней эксцентрика 4, воздействует на панель 3. Для перемещения по оси Y используется электродвигатель 8, который по средствам тяги 6, и связанного с ней эксцентрика 4, воздействует на панель 3. С противоположных эксцентрикам сторон панель 3 зажимается подпружиненными подшипниковыми упорами 2.Механизм подготовки совмещения - калибратор рис 10, предназначен для параллельного выравнивания поверхностей подложки и фотошаблона (удаления ˝клина˝) и установления между ними микрозазора. Эти операции необходимы для качественного выполнения совмещения и экспонирования. При уменьшении микрозазора и появление ˝клина˝ возрастает вероятность контакта фотошаблона с подложкой в отдельных зонах, что приводит к износу фотошаблона, и повреждению фоторезиста на подложке. Выравнивания поверхности подложки ведем не по всей поверхности, а лишь по периферийной части. Для этого между подложкой 7 и фотошаблоном 2 вводят калибратор 3, который имеет выступающую отбортовку по краям, выступающий край калибратора защищает рабочую часть фотошаблона и фоторезиста от повреждений. Затем запуская поочередно электродвигатели 9, добиваемся одинакового усилия давления каждого из поршней 8 на площадку 4, что означает полное прилегание подложки 7 к калибратору 3 и калибратора фотошаблону 2.МММ139457286Рис. 10 Принципиальная схема калибратора установки OSTEC EVG620Установка и снятие калибратора осуществляется кривошипно-шатунным механизмом 5 при помощи тяги 6. трех опорная система обеспечивает надежную фиксацию подложкодержателя, исключая его разворот.Блок экспонирования контактного типа рис 11 в качестве источника используется ртутно-кварцевая лампа 1, излучение которой рефлектором 2 Рис. 11 Принципиальная схема блок экспонирования установки OSTEC EVG620направляется на зеркало 3 и далее в блок линзовых растров 4. Зеркало 5 направляет расходящиеся пучки излучения на конденсор 7, преобразующий его в параллельный (в пределах угла коллимации) поток актиничного излучения, который падает на фотошаблон 8. Фотоприемник 6 служит для контроля дозы экспонирующего излученияУстановка нанесения, проявления и снятия фоторезиста OSTEC EVG®101 представлена на рис. 12. Качество нанесения фоторезиста влияет на качество выходящего продукта в целом и является основополагающим. Одними из главных характеристик данной установки являются: защита от пыли рабочей зоны и точность соблюдения скорости вращения центрифуги. Схема установки OSTEC EVG®101 в общем виде представлена на рис. 13 a внешняя камера аппарата снабжена раструбами воздушной завесы 1, также для удаления пыли, которая может слететь с оператора, установлен раструб воздушной завесы 7. Что обеспечивает минимальное количество включений в сыром фоторезисте.1451581231039876541112181317166acdbРис. 13 Принципиальная схема установки нанесения и проявления фоторезиста OSTEC EVG®101Для облегчения установки подложек из кассеты на подставку 6 установлен ручной вакуумный захват 2. После установки на подставку рис. 13-d подложка ориентируется под транспортер с при помощи упора 16 и двух роликов, 18 без привода и 17 с электроприводом. Затем рука 5 транспортера рис. 13-с, накрывает подложку вакуумным захватом 8 подключенного к шлангу вакуума 14. Вращаясь на шарнире 15, рука транспортера устанавливает подложку в центрифугу 3 на рабочий стол 9 рис. 13-b. После закрытия крышки 4 трубка подачи фоторезиста 11 поворачивается электроприводом 12 в рабочее положение (жиклером 10 над центром подложки). Центрифуга 3 подробно изображена на рис. 14.123111920211022923242526272829Рис.

Список литературы

Введение
Оптическая литография объединяет в себе такие области науки, как оптика, механика и фотохимия. При любом типе печати ухудшается резкость края (рис. 1). Проецирование двумерного рисунка схемы ведет к уменьшению крутизны края, поэтому нужен специальный резист, в котором под воздействием синусоидально модулированной интенсивности пучка будет формироваться прямоугольная маска для последующего переноса изображения травлением. Если две щели размещены на некотором расстоянии друг от друга, то неэкспонируемый участок частично экспонируется по следующим причинам:
1) дифракция;
2) глубина фокуса объектива;
3) низкоконтрастный резист;
4) стоячие волны (отражение от подложки);
5) преломление света в резисте.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
© Рефератбанк, 2002 - 2021