Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код |
343868 |
Дата создания |
06 июля 2013 |
Страниц |
80
|
Покупка готовых работ временно недоступна.
|
Содержание
Использование нетрадиционных источников энергии на подвижном составе
Введение
Использование нетрадиционных источников энергии на подвижном составе
Фрагмент работы для ознакомления
(3.9)
Поскольку энтропия может иметь как положительное, так и отрицательное значение, в принципе макс может быть даже более единицы (>100%). В этом случае топливный элемент будет работать охлаждаясь и используя тепло окружающей среды. Максимальный КПД соответствует полному использованию веществ, вступающих в реакцию в согласии с законом Фарадея и теоретической ЭДС элемента.
Так как энтропия газообразных веществ обычно выше энтропии жидких и твердых веществ, то основной вклад в энтропию реакции вносят газообразные реагенты и продукты реакции. Можно в первом приближении оценить знак ∆S реакции по мольному балансу газов продуктов реакции и исходных веществ.
Как известно на практике элементы отдают во внешнюю цепь при разряде значительно меньшую энергию, чем соответствует теоретической ЭДС Напряжение при разряде значительно меньше, чем ЭДС из-за наличия необратимых процессов: пассивности электродов, необходимости преодолевать внутреннее омическое сопротивление элемента и т.п. Коэффициент полезного действия с учетом указанного явления будет равен:
= макс
(3.10)
где U – клеммовое напряжение элемента; E – ЭДС элемента.
Если еще учесть, что в топливном элементе могут иметь место потери активных материалов из-за побочных процессов, то полный коэффициент полезного действия по отношению к возможной теплоте сгорания будет равен:
полн = макс F
(3.11)
где F= – коэффициент полезного действия по току.
Коэффициент F в значительной мере является условным, его назначение учесть потери, которые можно было бы в принципе использовать для получения энергии и которые не использованы из-за утечек, саморазряда, уноса с циркулирующими жидкостями, газами и т.п. Обычно при рациональной конструкции электродов непроизводительные утечки топливных элементов сводятся к минимуму. В итоге F для наиболее разработанных водородно-кислородных ТЭ (без учета затрат на продувку) может с достаточным основанием приниматься равным 0,95-0,98.
Максимальная работа и теоретический КПД ТЭ зависят также от давления, концентрации топлива, окислителя и продуктов реакции, поскольку для произвольной реакции aA+bB+…=yY+zZ+…:
(3.12)
Здесь ∆G0(T) – изменение энергии Гиббса для реакции, протекающей при той же температуре, но при условии , что все реагенты находятся при стандартном давлении PB=PC=…=PY=PZ=…=1.
Если учесть, что парциальные давления Pi могут быть выражены на основании закона Дальтона через общее давление P и мольную концентрацию компонента xi, то:
(3.13)
где ∆v=(y+z+…)-(b+c+…) – изменение числа молей при реакции.
Для ЭДС можно записать аналогичные выражения:
(3.14)
Произведем подстановку данных:
Реакция восстановления: А: 2H2 - 4e = 4H+
Реакция окисления: К: 4H+ + 4е + О2 = 2 H2О
∆E = fК - fА = 0,815- 0 = 0,815 В
∆G = -zF∆E = -4·36000·0,815·10-3 = -117
3.2 Вольт-амперная характеристика топливного элемента.
Графическое изображение зависимости напряжения ТЭ от силы или плотности тока называется вольт-амперной характеристикой (ВАХ) ТЭ. Типичная ВАХ ТЭ (для водородно-кислородного ТЭ) показана на рисунке 3.1.
Рисунок 3.1 – Вольт-амперные характеристики ТЭ.
1 – с учетом всех потерь напряжения; 2 – без концентрационных потерь; 3 – без омических и концентрационных потерь.
Прежде всего следует отметить, практически изменяемое значение ЭДС меньше Е0=1,23 В. В низкотемпературных (до 373 К) ТЭ ЭДС обычно равна 1,05 - 1,1 В. Это объясняется тем, что на кислородном электроде установлению обратимого потенциала препятствуют параллельно протекающие реакции. Только ускорив основную реакцию, например, путем повышения температуры выше 423 К, влияние побочных реакций можно резко уменьшить, и ЭДС тогда приблизится к своему термодинамическому значению. Но повысить температуру не всегда можно, т.к. это связано со своими большими трудностями.
При включении тока возникают омические потери Δом, прямо пропорциональные плотности тока. При небольшой плотности тока преобладают потери, обусловленные замедленностью электрохимических реакций. При малых токах скорость подачи активных веществ вполне достаточна для поддержания высокой концентрации их возле электродов. Но по мере увеличения плотности тока доля концентрационных потерь возрастает и при очень больших токах наблюдается падение напряжения из-за полного исчерпания активного вещества около какого-либо электрода. Все подходящее к электроду активное вещество (кислород или водород) мгновенно реагирует, и ток достигает своего предельного в данных условиях значения.
Рисунок 3.2 – Поляризационные кривые водородного и кислородного электродов.
1 и 1/ - сумма электрохимической и концентрационной поляризации; 2 и 2/ - электрохимическая поляризация.
Их ВАХ ТЭ нельзя сделать заключение, какая доля потерь попадает на тот или иной электрод. Падение напряжения характеризует только сумму всех потерь, а они распределяются чаще всего неравномерно.
При разработке ТЭ для улучшения его характеристик необходимо знать, какой электрод обуславливает большие потери. С этой целью определяют зависимость потенциалов отдельных электродов от плотности тока, т.е. снимают поляризационные кривые. На рисунке 2 представлены типичные поляризационные кривые водородного и кислородного электродов. Поскольку водородная реакция быстрая, на электроде легко устанавливается равновесный потенциал, и электрохимическая поляризация гораздо меньше, чем для кислородного электрода. Растворимость и коэффициенты диффузии водорода и кислорода близки, поэтому концентрационная поляризация зависит главным образом от устройства электродов. При нормальной работе электродов она в обоих случаях примерно одинакова. По разности между поляризационными кривыми можно вычислить напряжение на элементе, вычтя при этом омические потери в электролите. При нормальной работе водородно-кислородного ТЭ потери напряжения на кислородном электроде обычно в 5-10 раз больше, чем на водородном: скорость ионизации кислорода мала, для ускорения реакции нужен сильный сдвиг потенциала от равновесного значения.
3.3 Батареи на щелочных водородно-кислородных топливных элементах.
УЭХК самое крупное в мире предприятие по изотопному обогащению урана для атомных электростанций. На базе разработок, связанных с этим производством в 1967 г. здесь была начата разработка электрохимических генераторов (ЭХГ) на водородно-кислородных топливных элементах (ТЭ).
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00546