Вход

Концепции современной научной космологии

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 343526
Дата создания 07 июля 2013
Страниц 24
Мы сможем обработать ваш заказ (!) 25 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
910руб.
КУПИТЬ

Содержание

Оглавление
Введение
1.Метагалактика
2.Фотометрический парадокс
3.Красное смещение и эффект Доплера
4.Космологические модели вселенной
5. Реликтовое излучение
6.Антропный принцип в космологии
7.Проблема темной материи
Заключение
Список литературы

Введение

Концепции современной научной космологии

Фрагмент работы для ознакомления

Фотометрический парадокс обсуждался многими авторами ещё в 18 веке, впервые - Ж. Шезо, однако наиболее цитируемой работой по этому вопросу стала работа Г. Ольберса. Пытаясь устранить противоречие, Ольберс предположил существование разреженной поглощающей материи, ослабляющей свет далёких звёзд. Однако, как указал Дж. Гершель, это предположение не снимает противоречия, поскольку в рамках этой же гипотезы о Вселенной материя нагреется светом звёзд и станет излучать столько же энергии, сколько она поглотила.
Для разрешения фотометрического парадокса достаточно вспомнить о конечности скорости света и отказаться от гипотезы о бесконечной статической однородной евклидовой Вселенной. Как впервые показал У. Томсон, фотометрический парадокс не имеет места (т. е. ночное небо должно быть тёмным, каконо и есть в действительности), если выполняются следующие три условия: скорость света конечна; время существования Вселенной конечно либо конечно время светимости звёзд; среднее расстояние между звёздами порядка нескольких световых лет или более.
Все эти три условия выполняются в современных космологических моделях. Иными словами, если мы смотрим на всё более удалённые звёзды или галактики, то видим картину далёкого прошлого (вследствие конечности скорости света) и, в конце концов, доходим до времени, когда галактики и др. компактные объекты ещё не существовали (8).
3. Красное смещение и эффект Доплера
Красное смещение — наблюдаемое для всех далёких источников (галактики, квазары) понижение частот излучения, свидетельствующее о динамическом удалении этих источников друг от друга и, в частности, от нашей Галактики, т.е. о нестационарности (расширении) Метагалактики.
Фундаментальным свойством Вселенной является ее общее расширение. Наблюдения показывают, что скопления (и сверхскопления) галактик, разделенные расстояниями, превышающими 100—300 Мпс, удаляются друг от друга. Этот факт установлен Э. Хабблом в конце 20-х годов. Давно известно, что когда источник звука удаляется от нас, воспринимаемая нами частота звуковых колебаний уменьшается, а при приближении источника она, наоборот, возрастает. Аналогичное явление имеет место и при распространении света и вообще любых электромагнитных волн. Оно получило название эффекта Доплера. Если источник излучения движется от нас, и притом с большой скоростью, то частота воспринимаемых колебаний также понижается. Цвет при этом меняется, переходя, скажем, от синего к желтому или от желтого к красному.
Э. Хаббл, наблюдая свет, испускаемый далекими галактиками, установил, что спектральные линии в их излучении смещены в красную сторону спектра. При этом, чем дальше от нас галактика, тем больше это «красное смещение» приходящего от нее излучения. Отсюда следует, что галактики удаляются от нас и скорость их удаления тем больше, чем дальше находится галактика. Но ведь наша собственная Галактика, из которой мы ведем наблюдения,— отнюдь не центр мира, и, очевидно, нужно считать, что галактики или, точнее, скопления галактик, разбегаются не от нас, а вообще все они удаляются друг от друга (6).
Если расстояние между скоплениями есть L, то скорость их взаимного удаления v=HL. Это соотношение называют законом Хаббла; Н — постоянная Хаббла, ее величина не зависит от положения скоплений в пространстве. По современным оценкам H = 55—75 км/(с•Мпс). За несколько лет до открытия Хаббла нестационарность Вселенной была предсказана А. А. Фридманом, основоположником современной космологии. Опираясь на общую теорию относительности А. Эйнштейна, Фридман разработал модель однородной Вселенной, которая, как оказалось, не может находиться в состоянии покоя, а должна быть нестационарной. Эта нестационарность и проявляется в разбегании галактик и их скоплений. Оно происходит так, что общая однородность распределения скоплений (или сверхскоплений) не нарушается. Как показывает теория, сохранение однородности требует, чтобы скорости удаления тел друг от друга были прямо пропорциональны расстояниям между ними; именно это и найдено в астрономических наблюдениях.
Скорости космологического разбегания весьма значительны. Если скопление галактик находится от нас на расстоянии, скажем, тысячи мегапарсеков, то,— по закону Хаббла,— оно удаляется от нас со скоростью не меньше 55 тысяч км/с. Самые далекие квазары имеют скорости удаления, лишь немногим уступающие скорости света, равной 300 000 км/с. Расширение происходит с большими скоростями, а всемирное тяготение, взаимное притяжение космических систем, стремится его затормозить и обратить расширение сжатием.
Если сейчас космические системы удаляются друг от друга, то когда-то в прошлом они были ближе друг к другу или даже «касались» друг друга. В еще более ранние времени ни скопления, ни галактики, ни даже отдельные звезды не могли, очевидно, существовать в их современном виде, а вещество, из которого они состоят, должно было быть равномерно перемешано и составляло единую космическую среду. Чем дальше в прошлое, тем больше плотность этой среды. До каких же пор продолжается, если смотреть в прошлое, это возрастание плотности?
Согласно теории Фридмана, плотность мира возрастает в прошлое неограниченно и в определенный момент становится сколь угодно большой или, выражаясь математически, бесконечной. Этот момент берется в теории Фридмана за начало отсчета — за нуль времени. Все, что было еще «ранее» этого момента, лежит уже за пределами применимости модели Фридмана, да и в самый момент нулевого времени и бесконечной плотности эта модель уже неприменима. История физики учит, что всякий раз, когда в теоретических моделях или формулах возникает бесконечность, это означает, что мы сталкиваемся с каким-то новым явлением, принципиально отличным от того, что эти модели и формулы сами по себе описывают (7).
4. Космологические модели вселенной
Космология – это раздел астрономии и астрофизики, изучающий происхождение, крупномасштабную структуру и эволюцию Вселенной. Данные для космологии в основном получают из астрономических наблюдений. Для их интерпретации в настоящее время используется общая теория относительности А.Эйнштейна (1915). Создание этой теории и проведение соответствующих наблюдений позволило в начале 1920-х годов поставить космологию в ряд точных наук, тогда как до этого она скорее была областью философии.
Сейчас сложились две космологические школы: эмпирики ограничиваются интерпретацией наблюдательных данных, не экстраполируя свои модели в неизученные области; теоретики пытаются объяснить наблюдаемую Вселенную, используя некоторые гипотезы, отобранные по принципу простоты и элегантности. Широкой известностью пользуется сейчас космологическая модель Большого взрыва, согласно которой расширение Вселенной началось некоторое время тому назад из очень плотного и горячего состояния; обсуждается и стационарная модель Вселенной, в которой она существует вечно и не имеет ни начала, ни конца (2).
Любая космологическая модель Вселенной опирается на определенную теорию гравитации. Таких теорий много, но лишь некоторые из них удовлетворяют наблюдаемым явлениям. Теория тяготения Ньютона не удовлетворяет им даже в пределах Солнечной системы. Лучше всех согласуется с наблюдениями общая теория относительности Эйнштейна, на основе которой русский метеоролог А.Фридман в 1922 и бельгийский аббат и математик Ж. Леметр в 1927 математически описали расширение Вселенной. Из космологического принципа, постулирующего пространственную однородность и изотропность мира, они получили модель Большого взрыва. Их вывод подтвердился, когда Хаббл обнаружил связь между расстоянием и скоростью разбегания галактик.
Второе важное предсказание этой модели, сделанное Г. Гамовым, касалось реликтового излучения, наблюдаемого сейчас как остаток эпохи Большого взрыва. Другие космологические модели не могут так же естественно объяснить это изотропное фоновое излучение.
Согласно космологической модели Фридмана – Леметра, Вселенная возникла в момент Большого взрыва – около 20 млрд. лет назад, и ее расширение продолжается до сих пор, постепенно замедляясь. В первое мгновение взрыва материя Вселенной имела бесконечные плотность и температуру; такое состояние называют сингулярностью.
Согласно общей теории относительности, гравитация не является реальной силой, а есть искривление пространства-времени: чем больше плотность материи, тем сильнее искривление. В момент начальной сингулярности искривление тоже было бесконечным. Можно выразить бесконечную кривизну пространства-времени другими словами, сказав, что в начальный момент материя и пространство одновременно взорвались везде во Вселенной. По мере увеличения объема пространства расширяющейся Вселенной плотность материи в ней падает. С. Хокинг и Р. Пенроуз доказали, что в прошлом непременно было сингулярное состояние, если общая теория относительности применима для описания физических процессов в очень ранней Вселенной.
Чтобы избежать катастрофической сингулярности в прошлом, требуется существенно изменить физику, например, предположив возможность самопроизвольного непрерывного рождения материи, как в теории стационарной Вселенной. Но астрономические наблюдения не дают для этого никаких оснований.
Можно отметить 4 проблемы, стоящие сейчас перед космологической моделью Большого взрыва.
1. Проблема сингулярности: многие сомневаются в применимости общей теории относительности, дающей сингулярность в прошлом. Предлагаются альтернативные космологические теории, свободные от сингулярности.
2. Тесно связана с сингулярностью проблема изотропности Вселенной. Кажется странным, что начавшееся с сингулярного состояния расширение оказалось столь изотропным. Не исключено, правда, что анизотропное вначале расширение постепенно стало изотропным под действием диссипативных сил.
3. Однородная на самых больших масштабах, на меньших масштабах Вселенная весьма неоднородна (галактики, скопления галактик). Трудно понять, как одна лишь гравитация могла привести к появлению такой структуры. Поэтому космологи изучают возможности неоднородных моделей Большого взрыва.
4. Наконец, можно спросить, каково будущее Вселенной? Для ответа необходимо знать среднюю плотность материи во Вселенной. Если она превосходит некоторое критическое значение, то геометрия пространства-времени замкнутая, и в будущем Вселенная непременно сожмется. Замкнутая Вселенная не имеет границ, но ее объем конечен. Если плотность ниже критической, то Вселенная открыта и будет расширяться вечно. Открытая Вселенная бесконечна и имеет только одну сингулярность вначале. Пока наблюдения лучше согласуются с моделью открытой Вселенной (4).
Происхождение крупномасштабной структуры. У космологов на эту проблему есть две противоположные точки зрения.
Самая радикальная состоит в том, что вначале был хаос. Расширение ранней Вселенной происходило крайне анизотропно и неоднородно, но затем диссипативные процессы сгладили анизотропию и приблизили расширение к модели Фридмана – Леметра. Судьба неоднородностей весьма любопытна: если их амплитуда была большой, то неизбежно они должны были коллапсировать в черные дыры с массой, определяемой текущим горизонтом. Их формирование могло начаться прямо с планковского времени, так что во Вселенной могло быть множество мелких черных дыр с массами до 10–5 г. Однако С. Хокинг показал, что «мини-дыры» должны, излучая, терять свою массу, и до нашей эпохи могли сохраниться только черные дыры с массами более 1016 г, что соответствует массе небольшой горы.
Альтернативная точка зрения состоит в том, что об исходной структуре Вселенной можно узнать не более того, что дают наблюдения. Согласно этому консервативному подходу, нельзя считать юную Вселенную хаотической, поскольку сейчас она весьма изотропна и однородна. Те отклонения от однородности, которые мы наблюдаем в виде галактик, могли вырасти под действием гравитации из небольших начальных неоднородностей плотности. Однако исследования крупномасштабного распределения галактик (в основном проведенные Дж. Пиблсом в Принстоне), кажется, не подтверждают эту идею. Другая интересная возможность состоит в том, что скопления черных дыр, родившихся в адронную эру, могли стать исходными флуктуациями для формирования галактик.
Кроме стандартной модели Большого взрыва, в принципе существуют и альтернативные космологические модели:
1. Модель, симметричная относительно материи и антиматерии, предполагает равное присутствие этих двух видов вещества во Вселенной. Хотя очевидно, что наша Галактика практически не содержит антивещества, соседние звездные системы вполне могли бы целиком состоять из него; при этом их излучение было бы точно таким же, как у нормальных галактик. Однако в более ранние эпохи расширения, когда вещество и антивещество были в более тесном контакте, их аннигиляция должна была рождать мощное гамма-излучение. Наблюдения его не обнаруживают, что делает симметричную модель маловероятной.
2. В модели Холодного Большого взрыва предполагается, что расширение началось при температуре абсолютного нуля. Правда, и в этом случае ядерный синтез должен происходить и разогревать вещество, но микроволновое фоновое излучение уже нельзя прямо связывать с Большим взрывом, а нужно объяснять как-то иначе. Эта теория привлекательна тем, что вещество в ней подвержено фрагментации, а это необходимо для объяснения крупномасштабной неоднородности Вселенной.
3. Стационарная космологическая модель предполагает непрерывное рождение вещества. Основное положение этой теории, известное как Идеальный космологический принцип, утверждает, что Вселенная всегда была и останется такой, как сейчас. Наблюдения опровергают это.
4. Рассматриваются измененные варианты эйнштейновской теории гравитации. Например, теория К. Бранса и Р. Дикке из Принстона, в общем, согласуется с наблюдениями в пределах Солнечной системы. Модель Бранса – Дикке, а также более радикальная модель Ф. Хойла, в которой некоторые фундаментальные постоянные изменяются со временем, имеют почти такие же космологические параметры в нашу эпоху, как и модель Большого взрыва.
5. На основе модифицированной эйнштейновской теории Ж. Леметр в 1925 построил космологическую модель, объединяющую Большой взрыв с длительной фазой спокойного состояния, в течение которой могли формироваться галактики. Эйнштейн заинтересовался этой возможностью, чтобы обосновать свою любимую космологическую модель статической Вселенной, но когда было открыто расширение Вселенной, он публично отказался от нее (5).
5. Реликтовое излучение
Опираясь на теорию космологического расширения А. А. Фридмана и общие законы физики, Г. А. Гамов выдвинул в 40-е годы предположение о том, что в далеком прошлом Вселенной ее вещество было не только очень плотным, но и очень горячим. Эта идея нашла прочное наблюдательное подтверждение в 1965 г., когда А. Пензиас и Р. Вилсон обнаружили существование реликтового излучения. Оказалось, что вся Вселенная заполнена радиоволнами миллиметрового диапазона, распространяющимися равномерно по всем направлениям.
Квантовая теория уже давно установила, что всякое электромагнитное излучение проявляет как волновые, так и корпускулярные свойства, примирив и согласовав, таким образом, издавна соперничавшие в физике взгляды на природу света. О космических радиоволнах тоже можно говорить и как о совокупности частиц, квантов электромагнитного излучения, называемых фотонами. Этот «фотонный газ» равномерно заполняет всю Вселенную. Температура газа фотонов близка к абсолютному нулю — около 3 кельвинов, но энергия, содержащаяся в нем, больше световой энергии, испущенной всеми звездами за время их жизни. На каждый кубический сантиметр пространства Вселенной приходится приблизительно пятьсот квантов излучения, а полное число фотонов в пределах видимой Вселенной в несколько миллиардов раз больше полного числа частиц вещества, т. е. атомов, ядер, электронов, из которых состоят планеты, звезды и галактики.
Это общее фоновое излучение Вселенной называют, вслед за И. С. Шкловским, реликтовым, т. е. остаточным, оно действительно представляет собой остаток, реликт плотного и горячего начального состояния Вселенной.
Возможность обнаружения реликтового излучения на фоне излучения галактик и звезд в области сантиметровых радиоволн была обоснована расчетами А.Г. Дорошкевича и И.Д. Новикова, выполненными по предложению Я.Б. Зельдовича в 1964 г., за год до открытия А. Пепзиаса и Р. Вилсона (7).
6. Антропный принцип в космологии
Антропный принцип в современной космологии гласит, что жизнь на Земле, включая разумное существо - человека, возникла благодаря совокупности всех условий, так сказать, «стечению обстоятельств» во всей Метагалактике, то есть той Вселенной, о которой мы сегодня знаем. И это действительно так: в иных условиях наша жизнь могла и не возникнуть, во всяком случае, в ту астрономическую эпоху, когда она возникла реально. Но отсюда вовсе не следует, что благоприятствующие жизни условия в Метагалактике были «сфокусированы» исключительно на Землю - рядовую планету около рядовой звезды, находящейся на периферии, в одном из витков рядовой галактики в системе их огромного семейства Метагалактики.
В XIX веке, в частности, были гипотезы того времени о распространенности цивилизаций во Вселенной, и даже считалось, что в Солнечной системе жизнь и разум имеются «самое большее» на трех планетах, имеется в виду Венера, Земля и Марс, да и то расценивалось такая предполагавшаяся ситуация, как «колоссальная расточительность природы», потому что в Солнечной системе оставалось еще целых пять планет, лишенных жизни (шестая и девятая по общему счету, Плутон и Нептун, еще не были открыты в то время). Но какой же невообразимо «суперрасточительной» должна была быть природа всего мироздания, чтобы существовать ради жизни и разума на одной-единственной Земле!
Концепция уникальности Земли и человечества, конечно, лишь усиливает «ужас одиночества», о котором говорил Рассел. Как бы в противовес этой концепции и этому «ужасу» уже не в научных кругах, а в массовом сознании нередко упорно поддерживается версия об инопланетянах, якобы время от времени посещающих нашу планету (5).
7. Проблема темной материи
После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная, в конце концов, опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.
Расчетное значение критической средней плотности Вселенной примерно 10–29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 1030 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Список литературы

"Список литературы
1.Горелов А.А. Концепция современного естествознания. – М.: ЦЕНТР, 2004. – 638с.
2. Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. – М.: Аспект Пресс, 2006. – 725с.
3.Засов А. В., Кононович Э. В. Астрономия. – М.: Высшая школа. – 2002. – 624с.
4.Климишин И. А. Астрономия наших дней. — М.: Наука, 2002. – 453с.
5.Космос: Сборник. / Под ред. Ю.И. Коптева и С.А. Никитина — СПб.: Дельта, 2002. – 567с.
6.Наука и Вселенная; Том 1. / Под ред. А.Д. Суханова, Г.С. Хромова. – М.: Наука, 2001. – 571с.
7.Новиков И. Д. Эволюция Вселенной. – М.: Дрофа, 2004. – 511с.
8.Полак И.Ф. Строение Вселенной. – М.: ИНФРА. – 2002. – 530с.

"
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00629
© Рефератбанк, 2002 - 2024