Вход

Процессоры. Устройство, Работа, Эволюция.

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 341884
Дата создания 07 июля 2013
Страниц 33
Мы сможем обработать ваш заказ (!) 19 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 310руб.
КУПИТЬ

Содержание

Содержание
Содержание
Введение
1. Основные понятия и характеристики архитектуры микропроцессоров
1.1. Основные понятия и принцип работы процессора
1.1.1.Понятие центрального процессора
1.1.2. Устройство центрального процессора
1.2. Архитектура микропроцессора
1.2.1 Понятие микропроцессора
1.2.2. Типы архитектур микропроцессоров
1.2.3. Универсальные микропроцессоры
1.2.4. Однокристальные микроконтроллеры
1.2.5. Секционные микропроцессоры
1.2.6. Процессоры цифровой обработки сигналов
1.3. Параметры микропроцессора
2. Этапы развития архитектуры универсальных микропроцессоров
2.1. Эволюция архитектуры процессоров
2.2. Эволюция развития микропроцессоров Intel
3. Основные направления развития архитектуры универсальных
микропроцессоров
Заключение
Список использованных источнико

Введение

Процессоры. Устройство, Работа, Эволюция.

Фрагмент работы для ознакомления

2.1. Эволюция архитектуры процессоров
Сотрудник компании Intel Маршиан Эдвард Хофф в 1970 году сконструировал интегральную микросхему, которая по функциям аналогична центральному процессору большой ЭВМ – это был первый микропроцессор Intel-4004. В 1971 году , 15 ноября, он поступил на рынок электронной техники и этот день считают началом новой эры в электронике.
Особенностью МП Intel-4004 были размеры и производительность. Несморя на маленький размер - менее 3 см, он превосходил по производительности супер ЭВМ ENIAC. Правда, он мог обрабатывать всего 4 бита информации (в то время, как, процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но стоимость его была в десятки тысяч раз меньше.
Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП технологии с проектными нормами 10 мкм. Электрическая схема кристалла включала 2300 транзисторов, тактовая частота составляла 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел три регистра стека типа LIFO, счетчик команд (адресный стек), блок регистров сверхоперативной памяти – РОНов, аккумулятор, 4-разрядное АЛУ, регистр команд, включающий дешифратор команд и схему управления, а также схему связи с внешними устройствами. Функциональные узлы объединялись на кристалле между собой 4-разрядной шиной данных. Память команд составляла 4 Кбайт (для сравнения: объем ЗУ миниЭВМ редко был больше, чем 16 Кбайт), а блок РОНов насчитывал шестнадцать 4-разрядных регистров, которые использовали и как восемь 8-разрядных. Такая организация была сохранена и в следующих реализациях микропройессоровфирмы Intel. Три регистра стека предоставляли три уровня вложенности подпрограмм. МП i4004 монтировался в металлокерамический или пластмассовый корпус DIP (Dual In-line Package) с 16 выводами.
В системе команд МП было всего 46 инструкций. Кроме того, у кристалла были ограничены средства ввода/вывода, а система команд не имела в своем составе логические операции для обработки данных (AND, OR, XOR), Решалась данная проблема путем использования специальных подпрограмм. В модуле i4004 отсутствовала команда HALT (останов) и обработка прерываний.
Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.
Впоследствии этой же фирмой был выпущен еще один 4-разрядный микропроцессор - I-4040.
На протяжении многих лет крупнейшими разработчиками и производителями универсальных микропроцессоров в мире являются компании Intel (70-75 % мирового производства) и Advanced Micro Devices (AMD), занимающая 20-25 % рынка. Их разработки идут во многом параллельными путями. В 1972 году на рынке появился 8-разрядный МП I-8008, а вслед за ним, в 1974 году,- I-8080. Последний микропроцессор сыграл значительную роль в развитии микропроцессорной техники. Во многом он заложил основы архитектуры для всех последующих поколений микропроцессоров. Он имеет раздельные 8-разрядную шину данных и 16-разрядную шину адреса, возможность подключения памяти емкостью до 64 Кбайт и до256 внешних устройств. Микропроцессор содержит 16-разрядные указатель команд (Instruction Pointer - IP) и указатель стека (Stack Pointer - SP), шесть 8-разрядных регистров общего назначения (РОН), которые могут использоваться как три 16-разрядные. Система команд состоит из 78 базовых команд. При загрузке операнда из памяти применяется прямая, косвенная регистровая или стековая адресация. В общем случае программист может использовать регистровую, прямую, косвенную, непосредственную, индексную, прямую и косвенную автоинкрементную и автодекрементную адресации.
Микропроцессор содержит входные и выходные интерфейсные сигналы, обеспечивающие реакцию на сигналы запросов внешних прерываний, организацию прямого доступа к памяти, а также согласование своего цикла работы с медленными внешними устройствами (ВУ).
Его отличительной чертой стало создание микропроцессорного комплекта или семейства, то есть набора БИС, совместимых между собой по интерфейсным сигналам и функционально дополняющих друг друга. В нашей стране этот микропроцессорный комплект выпускался в составе серии К580.
БИС данного микропроцессорного комплекта вследствие хороших архитектурных решений, широкой номенклатуры и совместимости до сих пор можно встретить в некоторых цифровых устройствах, не требующих высокого быстродействия и разрядности, а идеи, заложенные в таких схемах, как контроллер прерываний и контроллер прямого доступа к памяти, используются в современных наборах системной логики - чипсетах.
Очередным крупным шагом в развитии микропроцессорной техники стало появление в 1978 году 16-разрядных универсальных микропроцессоров. Здесь прежде всего следует выделить микропроцессор I-8086, выпускавшийся отечественной электронной промышленностью в составе семейства К1810. Эти микропроцессоры, заложившие основы архитектуры x86, использовались при производстве первых персональных ЭВМ.
Основными отличительными чертами в архитектуре этого микропроцессора стали:
увеличение разрядности регистров общего назначения до 16 бит;
увеличение количества регистров общего назначения до 8;
увеличение количества режимов адресации операндов;
расширение количества флагов в регистре признаков, в том числе за счет введения флагов управления, обеспечивающих, например, возможность запрета внешних маскируемых прерываний;
появление сегментного механизма обращения к памяти, который обеспечил возможность обращения к памяти емкостью до 1 Мбайт при использовании 16-разрядных регистров.
Появившийся вслед за этим в 1982 году микропроцессор i286 явился переходной ступенью к 32-разрядным универсальным микропроцессорам. В процессоре i286 было реализовано два режима работы - защищенный и реальный. В реальном режиме работы процессор был полностью совместим с выпускавшимися ранее 16-разрядными микропроцессорами с архитектурой x86. В формировании адреса участвовали только 20 линий, поэтому максимальная емкость адресуемой памяти в этом режиме осталась прежней - 1 Мбайт. В защищенном режиме процессор мог адресовать до 1 Гбайт виртуальной памяти. Шина адреса увеличена до 24 бит, поэтому емкость адресуемой памяти составляла 16 Мбайт. Для защиты от несанкционированного доступа к программам и данным и выполнения привилегированных команд, которые могут кардинально изменить состояние всей системы, в процессоре i286 была введена защита по привилегиям. С этой целью микропроцессор поддерживал 4 уровня привилегий. Для выполнения операций над числами с плавающей точкой была разработана отдельная БИС - математический сопроцессор 80287.
В 1985 году был выпущен 32-разрядный универсальный микропроцессор i386 - первый полноценный представитель архитектуры IA-32 (Intel Architecture-32). Развитие этой архитектуры продолжалось вплоть до последних моделей микропроцессора Pentium 4. Данную архитектуру отличает ряд изменений, некоторые из которых имеют чисто количественное значение, а другие носят принципиальный характер.
Главным внешним отличием является увеличение разрядности шины данных и шины адреса до 32 бит. Это, в свою очередь, связано с изменениями в разрядности внутренних элементов микропроцессора.
Большие качественные изменения произошли на уровне работы микропроцессора в защищенном режиме, который был существенно развит по сравнению с i286. Отметим основные черты этого режима11.
1. Принципиально меняется механизм формирования физического адреса. Прежде всего, изменяется механизм использования сегментированной памяти. Сегменты в защищенном режиме могут иметь произвольную длину и располагаться в памяти начиная с произвольного адреса. Каждый сегмент снабжается рядом атрибутов (базовый адрес, длина сегмента, его тип, уровень защиты и т. п.), которые хранятся в специальной структуре, называемой дескриптором сегмента, и используются блоком управления памятью микропроцессора при формировании физических адресов операндов и команд. Появляется возможность использования страничного механизма организации памяти. Страница - это раздел памяти, который, в отличие от сегмента, имеет фиксированную длину. Страничная организация памяти служит основой виртуальной памяти и беспечивает более эффективное, по сравнению с сегментной, использование памяти.
2. Организуется аппаратная поддержка мультипрограммного режима работы, при котором в памяти одновременно содержатся программы и данные для выполнения нескольких задач. Каждой задаче предоставляется свой <виртуальный процессор>. В каждый момент времени реальный процессор предоставляется одному из виртуальных процессоров, выполняющему свою задачу.
3. С целью обеспечения защиты информации и упрощения организации мультипрограммного режима работы микропроцессор снабжается специальными механизмами, определяющими, какие операции и обращения к памяти разрешается производить процессору при выполнении текущей задачи.
2.2. Эволюция развития микропроцессоров Intel
За время, прошедшее после появления первого 32-разрядного микропроцессора, только фирмой Intel было выпущено несколько десятков модификаций 32-разрядных МП. Изменения в некоторых моделях носили принципиальный характер, а ряд моделей содержали в основном лишь количественные изменения отдельных параметров (частота, емкость кэш-памяти и т. п.). Основные этапы развития этой архитектуры, которые носят принципиальный характер, представлены в табл. 1.12
Таблица 1. Этапы развития архитектуры процессора Intel
Модель
Год начала выпуска
Число транзисторов на кристалле
Максимальная тактовая частота, МГц
Схема обработки данных
Наличие кэш-памяти на кристалле
Регистры
Количество команд в системе команд
Количество конвейеров/ступеней конвейера
i386
1985
275 тыс.
40
SISD, ФТ*
нет
32 разрядные с ФТ***
220
-
i486
1989
1,2 млн.
100
SISD, ФТ, ПТ**
да
--- // ---
+80-разрядные с ПТ***
--- // ---
---
Pentium
1993
3,1 млн.
200
--- // ---
--- // ---
--- // ---
--- // ---
2/5
Pentium MMX
1997
4,5 млн.
233
--- // ---
+SIMD, ФПБ
--- // ---
--- // ---
+ 57
4/14
Pentium III
1999
9,5 млн. (28,1 млн.)
1400
--- // ---
+SIMD, П3
--- // ---
+кэш L2
--- // ---
+128-разрядные SSE
+70
5/11
Pentium 4
2000
42 млн.
3800
--- // ---
--- // ---
--- // ---
+144
9/31
Примечания: ФТ*- числа с фиксированной точкой, ПТ**- числа с плавающей точкой
Остановимся вкратце на их рассмотрении.
К основным нововведениям микропроцессора i486, выпущенного в 1989 году, относятся два, которые связаны с расширившимися технологическими возможностями. Это размещение непосредственно на кристалле БИС двух важных блоков, которые раньше выполнялись в виде отдельных микросхем: кэш-памяти и блока процессора обработки чисел с плавающей точкой (floating point unit - FPU). Кэш-память имела объем 8Кбайт и предназначалась для хранения программ и данных. FPU имел внутренний файл из восьми 80-разрядных регистров, свой регистр состояния и управления.
Главной отличительной чертой нового продукта в линейке 32-разрядных микропроцессоров - МП Pentium - явилась возможность конвейерной обработки информации. Хотя некоторые авторы считают, что конвейер появился уже в i486, это не является общепринятым мнением.
Высокая скорость выполнения команд в МП Pentium достигалась благодаря двум 5-ступенчатым конвейерам, позволявшим одновременно исполнять несколько инструкций. Обмен информацией с памятью через кэш данных осуществлялся независимо от процессорного ядра, а буфер инструкций был связан с ним через высокоскоростную 256-разрядную внутреннюю шину. Несмотря на то что новый кристалл был спроектирован как 32-разрядный, для связи с остальными компонентами системы использовалась внешняя 64-разрядная шина данных. Появление конвейера обусловило необходимость введения еще одного блока - схемы предсказания переходов. Эффективная работа данной схемы чрезвычайно важна для повышения производительности микропроцессора. Все последующие модификации микропроцессоров непременно связаны с улучшением ее работы.
Основным нововведением разработанного в 1997 году микропроцессора Pentium MMX стал блок, обеспечивавший новую схему обработки целочисленной информации - SIMD (Single Instruction - Multiple Data: одна команда - множество данных). До этого обработка велась по классической схеме SISD: каждая команда выполняла действия над своей парой операндов. Введение SIMD-операций позволило обрабатывать одновременно несколько операндов с использованием одной команды, что дало возможность существенно поднять производительность микропроцессора на тех задачах, где над большими массивами однородной информации выполнялись одинаковые операции, например, в мультимедийных приложениях. Появление таких возможностей потребовало введения в систему команд 57 новых инструкций, но регистровая структура микропроцессора не изменилась.
Микропроцессор Pentium III, появившийся в 1999 году, позволил обрабатывать по схеме SIMD не только целочисленные операнды, но и числа с плавающей точкой. Для этого система команд была расширена на 70 инструкций, а в структуре микропроцессора появился специальный блок SSE, содержащий, в частности, отдельный регистровый файл из восьми 128-разрядных регистров. Еще одной новинкой, использованной в Pentium III, было размещение на кристалле кэш-памяти второго уровня (начиная с ядра Coppermine), работающей на частоте ядра. Но это носило скорее количественный характер и не внесло существенных изменений в архитектуру.
Микропроцессор Pentium 4 завершает линейку 32-разрядных микропроцессоров. Основным вкладом этого микропроцессора в развитие архитектуры IA-32 стало еще большее увеличение глубины конвейера - до 31 стадии, что позволило сильно нарастить частоту процессора. Количество конвейеров возросло до 9. Кроме поддержки ставших традиционными инструкций MMX и SSE, в Pentium 4 добавили еще 144 команды SSE2, затем и SSE3, ориентированные в первую очередь на работу с потоковыми данными.
В 2001 году фирмой Intel был выпущен микропроцессор Itanium, положивший начало новой 64-разрядной архитектуре - IA-64, которая сменила архитектуру 32-разрядных микропроцессоров IA-32, господствовавшую на протяжении более 15 лет.
3. Основные направления развития архитектуры универсальных
микропроцессоров
Развитие микропроцессорной техники в области универсальных микропроцессоров идет по пути постоянного повышения их производительности. Традиционными направлениями такого развития являются повышение тактовой частоты работы МП и увеличение количества одновременно выполняемых команд за счет увеличения числа конвейеров (исполнительных устройств) в МП.
Однако оба эти направления следует признать экстенсивными, имеющими естественные ограничения.
Повышение тактовой частоты, которое в основном обеспечивается путем увеличения количества ступеней в конвейере, приводит к большим потерям времени при необходимости перезагрузки конвейера вследствие конфликтов по управлению или при переключении на новую задачу. Такое увеличение имеет также и физические ограничения, связанные со схемотехникой кристалла БИС. Ограничения определяются также влиянием накладных расходов при передаче частично обработанной команды на следующую ступень конвейера. На больших частотах эти расходы становятся соизмеримыми с длительностью обработки на очередном этапе. Во многом это направление исчерпало себя в микропроцессоре Pentium 4, работающем на частотах, близких к 4 ГГц.
Повышение производительности за счет увеличения числа конвейеров в микропроцессоре можно оценить увеличением числа команд, выполняемых программами за такт (IPC - INsTRuctions Per Cycle). Так, для МП Alpha 21264 этот показатель равен 6, столько же микроопераций за такт может выдать Pentium 4. Но это предельные значения, а реальные программные коды, в частности, из-за различных взаимозависимостей, дают гораздо более низкое значение IPC. Дальнейшее увеличение числа исполнительных устройств ведет к усложнению расположенного в БИС устройства управления, распределяющего команды по конвейерам, а также к сложным взаимозависимостям между данными. К тому же реальные коды программ не позволяют обеспечить эффективную загрузку всех имеющихся в МП исполнительных устройств, что приводит к их простоям. Следует отметить также, что рост производительности микропроцессора не является прямо пропорциональным росту количества конвейеров, а обычно существенно ниже.
В настоящее время для повышения производительности микропроцессоров используется ряд новых подходов, представленные в таблице 2.
Таблица 2. Основные направления повышения производительности МП
Направление повышения производительности
Принцип
Класс решаемых задач
Примеры

Список литературы

Список использованных источников
1.Богданов А.В., Корхов В.В., Мареев В.В., Станкова Е.Н.Архитектуры и топологии многопроцессорных вычислительных систем.- М.: БИНОМ. Лаборатория знаний, 2004. - 176 с.:ил.
2.Горюнов А.Г. Ливенцов С.Н. Микропроцессоры: Учеб. пособие. – Томск: Изд-во ТПУ, 2005. – 89 с.
3.Гуров В.В. Архитектура микропроцессоров. – М.: БИНОМ. Лаборатория знаний, 2010. - 273 с.:ил.
4.Гуров В.В. Компоненты и архитектура компьютеров: конспект лекций, 2008.- 104 с.
5.Информатика: Базовый курс / С. В. Симонович и др. — СПб.: Питер, 2003. — 640 с.: ил.
6.Микропроцессоры: В 3-х кн. / Под ред. Преснухина. М.: Высшая школа, 1986. Кн.1. 495 с. Кн. 2. 383 с. Кн. 3. 351 с.
7.Нестеров П. В. Микропроцессоры.- М.: Высшая школа, 1984. -104 с.
8.Новиков Ю.В. ,  Скоробогатов П.К. Основы микропроцессорной техники. - М.: БИНОМ. Лаборатория знаний, 2008. - 368 с.:ил.
9.Новиков Ю.В. Введение в цифровую схемотехнику.- М.: БИНОМ. Лаборатория знаний, 2006. - 344 с.:ил.
10.Таненбаум Э. Архитектура компьютера. 5-е изд. ( CD). — СПб.: Питер, 2007. — 844 с: ил.
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00472
© Рефератбанк, 2002 - 2024