Вход

Философские проблемы физики

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 336726
Дата создания 07 июля 2013
Страниц 37
Мы сможем обработать ваш заказ (!) 19 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
910руб.
КУПИТЬ

Содержание

Введение…………………………………………………………………………3
Глава 1. Философия и эволюция физического знания……………………5
Глава 2. Философское учение о методах научного познания……………21
Глава 3. Моделирование в системе методов физических исследований.25
Заключение……………………………………………………………………..34
Список литературы……………………………………………………………37

Введение

Философские проблемы физики

Фрагмент работы для ознакомления

Специальная теория относительности имеет дело с инерциальными системами координат, принцип относительности рассматривается применительно к прямолинейному и равномерному движению. Что же касается непрямолинейного или ускоренного движения, то принцип относительности в его прежней формулировке здесь оказывается несправедливым, ибо в движущейся ускоренной системе координат механические, оптические и электромагнитные явления протекают не так, как в инерциальных системах отсчета. Правильное описание этих физических явлений, учитывающее влияние на них ускорения, оказалось возможным на основе использования криволинейных координат в четырехмерном пространстве (четырехмерном пространственно-временном континууме Минковского). Эйнштейн предположил, что особенность сил тяготения заключается в том, чтоони всегда пропорциональны массе тела, на которое они действуют. Отсюда следовало, что все тела при одних и тех же начальных условиях движутся в поле тяготения независимо от массы или заряда, т. е. их траектория движения не зависит от свойств движущегося тела, а определяется свойствами поля тяготения. Это позволяет влияние поля тяготения, действующего в определенной части пространства, учитывать путем введения локальной кривизны четырехмерного пространства. В специальной теории относительности четырехмерный пространственно-временной континуум является эвклидовым (плоским). Можно предположить, что четырехмерное пространство может быть и неэвклидовым, т. е. обладать переменной кривизной. В этом случае определение тела в пространстве возможно лишь с помощью криволинейной системы координат. Таким образом, под действием сил тяготения тела изменяют свои размеры и время течет в зависимости от величины этих сил, т. е. поле тяготения меняет свойства пространства и времени. Электромагнитное поле существует в пространстве и времени, а гравитационное поле выражает геометрию пространства и времени. В соответствии с общей теорией относительности геометрия Евклида применима лишь к пустым пространствам, где нет тяжелых тел. Вблизи же тяжелых тел пространство изогнуто.
Общая теория относительности - общая физическая теория пространства, времени и тяготения - явилась новым этапом в развитии теории тяготения. Эйнштейн характеризовал отличие новой теории тяготения от старой следующим образом2:
«1. Гравитационные уравнения общей теории относительности могут быть применены к любой системе координат. Выбрать какую-либо особую систему координат в специальном случае - дело лишь удобства. Теоретически допустимы все системы координат. Игнорируя тяготение, мы автоматически возвращаемся к инерциальной системе специальной теории относительности.
2. Ньютонов закон тяготения связывает движение тела здесь и теперь с действием другого тела в то же самое время на далеком расстоянии. Этот закон стал образцом для всего механического мировоззрения. Но механическое мировоззрение потерпело крах. В уравнениях Максвелла мы создали новый образец для законов природы. Уравнения Максвелла суть структурные законы. Они связывают события, которые происходят теперь и здесь, с событиями, которые происходят немного позднее и в непосредственном соседстве. Они суть законы, описывающие электромагнитное поле. Наши новые гравитационные уравнения суть также структурные законы, описывающие изменение поля тяготения. Схематически мы можем сказать: переход от ньютоновского закона тяготения к общей теории относительности до некоторой степени аналогичен переходу от теории электрических жидкостей и закона Кулона к теории Максвелла.
3. Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения общей теории относительности стремятся раскрыть геометрические свойства нашего мира».
Итак, механическая картина мира оказалась несостоятельной в силу того, что было невозможно объяснить все явления, исходя из предположения о действии между неизменными частицами простых сил. Попытки перехода от механических представлений к понятию поля были успешными в области электромагнитных явлений. Структурные законы, сформулированные для электромагнитного поля, связали события, смежные в пространстве и времени. Это были законы специальной теории относительности. Общая теория относительности сформулировала структурные законы, описывающие поле тяготения между материальными телами, она обратила внимание на ту роль, которую играет геометрия в описании физической реальности.
В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.
В 1926 г. В. Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. Столкнувшись с тем, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины и свести их к набору отдельных элементов, соответствующих различным возможным переходам квантового атома, он пришел к тому, чтобы каждую физическую характеристику квантовой системы представлять таблицей чисел (матрицей). При этом он сознательно руководствовался целью построить феноменологическую концепцию, чтобы исключить из нее все, что невозможно наблюдать непосредственно. В этом случае нет никакой необходимости вводить в теорию положение, скорость или траекторию электронов в атоме, поскольку мы не можем ни измерять, ни наблюдать эти характеристики. В расчеты следует вводить лишь те величины, которые связаны с реально наблюдаемыми стационарными состояниями, переходами между ними и сопровождающими их излучениями. В матрицах элементы были расположены в строки и столбцы, причем каждый из них имел два индекса, один из которых соответствовал номеру столбца, а другой - номеру строки. Диагональные элементы (т. е. элементы, индексы которых совпадают) описывают стационарное состояние, а недиагональные (элементы с разными индексами) - описывают переходы из одного стационарного состояния в другое. Величина же этих элементов связывается с величинами, характеризующими излучение при данных переходах, полученными с помощью принципа соответствия. Именно таким способом Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории, суть которой состоит в замене физических величин, имеющих место в атомной теории, матрицам - таблицам чисел3. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции.
Итак, что же представляет собой современная физика и какова тенденция ее развития? Будет целесообразно взглянуть на пройденный физикой путь глазами ее творцов и оценить достигнутое их словами. Прежде всего, что представляет собой физика как целостное образование?
Физика, в представлении В. Вайскопфа, - это дерево, в нижней части ствола которого находятся классическая физика, электродинамика и физика теплоты вместе с широко раскинувшимися ветвями, символизирующими обширные приложения этих направлений. Выше по стволу находятся атомная физика с ее ветвями, такими как химия, материаловедение, электроника и оптика. Еще выше расположена ядерная физика с ее молодыми ветвями, символизирующими науку о радиоактивности, метод меченых атомов, геологию и астрофизические приложения. На вершине, где пока нет ветвей, помещаются современные физика элементарных частиц и космопология. Шестьдесят лет назад верхушкой без ветвей была атомная физика.
Глава 2. Философское учение о методах научного познания
В “Философской энциклопедии” методология определяется как философское учение о методах познания и преобразования действительности, о применении принципов мировоззрения к процессу познания, к духовному творчеству вообще и к практике. При этом имеются в виду не только общефилософские, но и конкретно-научные методы. Методологию иногда понимают также как определенную систему методов, которые применяются в процессе познания в рамках той или другой науки. Нет единого мнения и о том, что представляет собой методология как наука: является ли она философской дисциплиной или это частнонаучная область, или сама философия выступает методологией, поскольку каждое философское положение имеет методологическое значение. Существует, например, мнение, что методология как совокупность методов познания — это одно, а учение о методологии — это совсем другое. Причем учение о методологии рассматривается как частнонаучная дисциплина, ибо философия не исчерпывает содержания методологии. Есть и предположение, что методология — вообще не наука, что она стоит вне науки и является искусством подбора принципов и методов исследования.
Такое разнообразие мнений о методологии на современном этапе ее развития естественно, так как нет какого-либо систематизированного изложения ни методологии науки, ни методологии конкретных наук, ни самих методологических принципов и методов научного познания. Кроме того, в познавательной практике ни один ученый, приступая к экспериментальному либо теоретическому исследованию, не обращается к какому-то “руководству по методологии”. Он опирается прежде всего на свой научный и жизненный опыт, исходит из того стиля мышления, из тех стереотипов, которые у него сформировались в процессе обучения и работы, общения с учителями и коллегами. В то же время большинство специалистов в области методологии науки решают конкретные либо общие методологические проблемы науки и научных теорий, анализируют методологические принципы, методы познания самым частным образом, не имея в виду, во всяком случае, явно, какую-то целостную методологическую систему.
В то же время ни одна философская система не предоставляет в чистом виде методологических принципов любой степени общности, основываясь на которых можно единственным образом построить конкретно-научную теорию (разумеется, опираясь при этом на определенные эмпирические результаты). Любая конкретизация философских принципов и законов, их спецификация в соответствии с конкретно-научной теорией уже предполагают определенный уровень развития этой теории, т.е. наличие конкретных методологических принципов, методологического обоснования, сформулированных прежде всего автором теории. Таким образом, обычно философская методология, философское обоснование теории идут “вслед” за развитием теории. Во всяком случае, мы не можем назвать ни одной физической теории, сформулированной явным образом на определенных философских предпосылках (даже если к ним присовокупить эмпирические основания), вытекающей из определенной философской системы.
Такая “неявность” воздействия философии как методологии научного познания на формирование конкретных научных теорий обусловлена в значительной степени антиномичностыо научного знания, на которую указал И.Кант4. Согласно Канту, относительно любого изучаемого объекта можно высказать две взаимоисключающие точки зрения, развить две концепции, каждая из которых будет находиться в полном согласии с формальной логикой и соответствовать всей совокупности эмпирических данных об исследуемом объекте. Иными словами, допустимы разные формы описания одних и тех же эмпирических данных. С этой проблемой мы самым серьезным и явным образом столкнулись на современном этапе развития физики, связанном с поисками великого и супервеликого объединения. Здесь сформулировано множество концепций относительно одного и того же объекта исследования, альтернативных друг другу уже на уровне своих оснований и в то же время кажущихся весьма убедительными. Особая же острота сложившегося положения вызвана еще и тем, что пока нет возможности выбора концепции на основе эмпирических исследований, так как они ограничены возможностями человеческой цивилизации, и прежде всего энергетическими возможностями. Выбор концепции в этом случае осуществляется либо на основе методологических принципов, либо на основе косвенных проверок и экспериментов.
Если рассматривать историческое развитие научного познания, то можно зафиксировать, что в период становления научного познания философия представляла собой его непосредственную методологическую базу и основание. В этот период философские понятия, категории и представления входили в теорию непосредственным образом как ее фундаментальные составные части и одновременно как методологические принципы, определяющие сам процесс познания. Но в ходе развития научного познания, и прежде всего на этапе развития классических теорий, наблюдается своеобразная “инверсия”, когда методологической основой становится не какая-либо философская система, а конкретно-научная теория, претендующая на статус всеобщего обоснования всех остальных научных теорий. Такой теорией стала, как известно, в свое время классическая механика. Философские предпосылки в этом случае способствовали формированию классической механики, но затем они долго не играли никакой методологической роли.
Развитие науки разрушило представления об абсолютных методологических возможностях отдельной теории, даже самой высокой общности, и привело к своеобразному методологическому взрыву: методологические концепции различной степени общности и самого разного характера стали множиться с катастрофической быстротой и в огромном количестве. Можно сказать, что фактически сколько появилось теорий и сколько было ученых, столько мы имеем методологических концепций.
Глава 3. Моделирование в системе методов физических исследований
Слово "модель" произошло от латинского слова "modelium", означает: мера, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или вещи, сходной в каком-то отношении с другой вещью" (11,с7). По мнению многих авторов (4,6,11), модель использовалась первоначально как изоморфная теория (две теории называются изоморфными, если они обладают структурным подобием по отношению друг к другу).
С другой стороны, в таких науках о природе, как астрономия, механика, физика термин "модель" стал применяться для обозначения того, что она описывает. В. А. Штофф отмечает, что "здесь со словом "модель" связаны два близких, но несколько различных понятия"5. Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Таковы, в частности представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться. В более узком смысле термин "модель" применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических ("планетарная модель атома" - строение атома изображалось как строение солнечной системы). Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.
Во многих дискуссиях, посвященных гносеологической роли и методологическому значению моделирования, этот термин употреблялся как синоним познания, теории, гипотезы и т.п. Например, часто модель употребляется как синоним теории в случае, когда теория еще недостаточно разработана, в ней мало дедуктивных шагов, много неясностей. Иногда этот термин употребляют в качестве синонима любой количественной теории, математического описания. Несостоятельность такого употребления с гносеологической точки зрения, по мнению В.А. IIIтоффа, в том, "что такое словоупотребление не вызывает никаких новых гносеологических проблем, которые были бы специфичны для моделей"6. Существенным признаком, отличающим модель от теории является не уровень упрощения, не степень абстракции, и следовательно, не количество этих достигнутых абстракций и отвлечении, а способ выражения этих абстракций, упрощений и отвлечении, характерный для модели.
В философской литературе, посвященной вопросам моделирования, предлагаются различные определения модели. А.А. Зиновьев и И.И. Pевзин дают следующее определение: "Пусть X есть некоторое множество суждений, описывающих соотношение элементов некоторых сложных объектов А и В. Пусть Y есть некоторое множество суждений, получаемых путем изучения А и отличных от суждения Х. Пусть есть некоторое множество суждений, относящихся к В и также отличных от Х. Если выводится из конъюнкции Х и Y по правилам логики, то А есть модель В, а В есть оригинал модели"7. Здесь модель - лишь средство получения знаний, а не сами знания, следовательно, из рассмотрения выпадают идеальные модели (мысленные), т.к. их значение в качестве элементов знания реальных объектов отрицать нельзя. Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального конструирования аналогов (моделей), в которых воспроизводятся принципы организации и функционирования этой системы. Здесь в основе мысль, что модель - средство познания, главный ее признак - отображение. Наиболее полное определение понятия "модель" дает В.А. IIIтофф в своей книге "Моделирование и философия": "Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте"8.
При дальнейшем рассмотрении моделей и процесса моделирования будем исходить из того, что общим свойством всех моделей является их способность отображать действительность. В зависимости от того, какими средствами, при каких условиях, по отношению к каким объектам познания это их общее свойство реализуется, возникает большое разнообразие моделей, а вместе с ним и проблема классификации моделей.
В литературе, посвященной философским аспектам моделирования, представлены различные классификационные признаки, по которым выделены различные типы моделей. Например, называются такие признаки, как:
- Способ построения (форма модели);
- Качественная специфика (содержание модели).
По способу построения модели бывают материальные и идеальные. Остановимся на группе материальных моделей. Несмотря на то, что эти модели созданы человеком, но они существуют объективно. Их назначение специфическое – отразить пространственные свойства, динамику изучаемых процессов, зависимости и связи. Материальные модели соединены с объектами отношением аналогии.
Материальные модели неразрывно связаны с воображаемыми (даже, прежде, чем что-либо построить - сначала теоретическое представление, обоснование). Эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение. По форме они могут быть:
- образные, построенные из чувственно наглядных элементов;

Список литературы

Список литературы:

1. Штофф В.А. "Моделирование и философия" М.: Наука, 1966
2. Кочергин А.Н. "Моделирование мышления" М.: Наука, 1969
3. Веденов А.А. "Моделирование элементов мышления" М.: Наука, 1988
4. Бор Н. Избр. труды: В 2 т. М. , 1971
5. Гейзенберг В. Физические принципы квантовой теории. М. , 1932
6. Гейзенберг В. Физика и философия: Часть и целое. М. , 1980
7. Дирак П. Принципы квантовой механики. М. , 1960
8. Карнап Р. Философские основания физики. М. , 1971
9. Степин В. С. Теоретическое знание. М. , 2000
10. Фейнмановские лекции по физике. М. , 1967
11. Философские проблемы естествознания. М. , 1985
12. Эйнштейн А. Собр. науч. трудов: В 4х т. М. , 1965

Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00534
© Рефератбанк, 2002 - 2024