Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код |
332759 |
Дата создания |
07 июля 2013 |
Страниц |
19
|
Мы сможем обработать ваш заказ (!) 26 декабря в 16:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
ИСТОРИЯ УЧЕНИЯ О КЛЕТКЕ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Введение
История учения о клетке.
Фрагмент работы для ознакомления
Доказав всеобщность клеточного строения, Т.Шванн установил, что клетки, сколь бы они различны ни были, возникают всегда принципиально сходным образом, а именно путем цитогенеза. Признание цитогенеза позволило говорить о сходстве развития и принципиальной сравнимости клеток всех многоклеточных организмов — растений и животных. Отмечая заслуги Т.Шванна, известный немецкий гистолог В. Вальдейер (1909) писал: «… не Шванн открыл микроскопические структуры, которые мы называем клетками… Но только Шванн научил нас понимать их значение». Клеточная теория положила начало формированию цитологии как науки.1858г.В 1858 г. немецкий врач Р. Вирхов доказал, что новые клетки возникают только в результате деления ранее существовавших клеток. Это привело к осознанию того факта, что рост и развитие организмов связаны с делением клеток и их дальнейшей дифференцировкой, приводящей к образованию тканей и органов.К концу 19 века ученым биологам стало понятно, что необходимо усовершенствование микроскопа для того чтобы стало возможным изучать детали строения клетки. После его усовершенствования и были открыты основные ее структурные компоненты. Одновременно стали накапливаться знания об их функциях в жизнедеятельности клетки. К этому времени и относится появление цитологии, которая в настоящее время представляет собой одну из наиболее интенсивно развивающихся биологических дисциплин.Современное развитие науки привело к тому что, появились многочисленные и часто довольно сложные методы исследования, которые позволили установить тонкие детали строения и выявить функции самых разнообразных клеток и их структурных компонентов. Исключительно большую роль в цитологических исследованиях продолжает играть световой микроскоп, который в наши дни представляет собой сложный, совершенный прибор, дающий увеличение до 2500 раз. Но и столь большое увеличение далеко не достаточно для того, чтобы видеть тонкие детали строения клеток, даже если рассматривать срезы толщиной 5–10 мкм1, окрашенные специальными красителями.Новейшая эпоха в исследовании структуры клетки возникла после изобретения электронного микроскопа, который дает увеличение в десятки и сотни тысяч раз. Вместо света в электронном микроскопе используется быстрый поток электронов, а стеклянные линзы светооптического микроскопа заменены в нем электромагнитными полями. Электроны, летящие с большой скоростью, сначала концентрируются на исследуемом объекте, а затем попадают на экран, подобный экрану телевизора, и на нем можно либо наблюдать увеличенное изображение объекта, либо его фотографировать. Электронный микроскоп был сконструирован в 1933 г., а особенно широко стал применяться для исследования биологических объектов в последние 10–15 лет.Для исследования в электронном микроскопе клетки подвергаются очень сложной обработке. Приготовляются тончайшие срезы клеток, толщина которых равна 100–500 А. Только такие тонкие срезы пригодны для электронно-микроскопического исследования в связи с малой проницаемостью их для электронов.В последнее время все больше и больше используются химические методы исследования клетки. Специальная отрасль химии – биохимия располагает в наши дни многочисленными тонкими методами, позволяющими точно установить не только наличие, но и роль химических веществ в жизнедеятельности клетки и целого организма. Созданы сложные приборы, называемые центрифугами, которые развивают огромную скорость вращения (несколько десятков тысяч оборотов в минуту). С помощью таких центрифуг можно легко отделить структурные компоненты клетки друг от друга, так как они имеют разный удельный вес. Этот очень важный метод дает возможность изучать отдельно свойства каждой части клетки.Изучение живой клетки, ее тончайших структур и функций – задача очень нелегкая, и только сочетание усилий и колоссальной работы цитологов, биохимиков, физиологов, генетиков и биофизиков позволило детально изучить ее структурные элементы и определить их роль.Строение клеткиКлетка любого одноклеточного и многоклеточного организма состоит из двух важнейших, неразрывно связанных между собой частей: цитоплазмы и ядра, которые представляют элементарную целостную живую систему.Наружная клеточная мембрана. Электронно-микроскопические исследования установили, что любая клетка растений и животных, бактерий и простейших имеет очень тонкий внешний покров, который называется наружной мембраной клетки («мембрана» – кожица, пленка, лат.). Те же оболочки, которые обычно видны в световой микроскоп, и в первую очередь толстые оболочки растительных клеток, состоящие у большинства растений из клетчатки, представляют собой лишь дополнительные образования на поверхности этой наружной мембраны.Наружная мембрана клетки пронизана многочисленными мельчайшими отверстиями – порами, через которые внутрь клетки из внешней среды могут проникать только ионы, вода и мелкие молекулы многих других веществ, находящихся во внешней среде, окружающей клетку. Через поры могут также выходить из клетки во внешнюю среду разнообразные вещества. Через наружную мембрану в клетку попадают и капли жидкости, содержащие в растворенном виде разнообразные вещества. Процесс поглощения жидкости в виде мелких капель напоминает питье и потому был назван пиноцитозом («пино» – пью, «цитос» – клетка, греч.).Цитоплазма. Цитоплазма, отграниченная от внешней среды наружной мембраной, заполняет всю клетку, и в ней располагаются различные органоиды и ядро. Это внутренняя полужидкая среда клетки, которая содержит большое количество воды, а из органических веществ в ней преобладают белки. Митохондрии. Митохондрии («митос» – нить, «хондрион» – зерно, гранула, греч.) – это тельца размером примерно от 0,2 до 7мкм, разнообразные по своей форме: округлые, овальные, палочковидные, нитевидные. Располагаются митохондрии в цитоплазме клеток, и количество их в разных клетках может варьировать от 2–3 до 1000 и более. Подсчитано, например, что в одной клетке печени млекопитающих содержится около 2500 митохондрий.Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение в клетке, сосчитать их количество. При электронно-микроскопическом исследовании обнаружено, что каждая митохондрия имеет довольно сложное строение. Внешний покров этого органоида представлен двумя мембранами: наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, наоборот, образует многочисленные складки, которые направлены во внутреннюю полость митохондрии. Складки внутренней мембраны называются кристами («криста» – гребень, вырост, лат.). Наружная и внутренняя мембраны митохондрий имеют такое же трехслойное строение, как и наружная мембрана клетки. В их состав входят белки и жиры. На наружной и внутренней мембранах митохондрий и особенно на кристах располагается большое количество разнообразных ферментов. К числу ферментов митохондрий относятся, прежде всего, те, с помощью которых осуществляется дыхание клеток, а также синтез особого вещества, которое называется аденозинтрифосфорной кислотой или, сокращенно, АТФ. Это вещество обладает большими запасами энергии, которая освобождается при распаде АТФ, постоянно происходящем в митохондриях под влиянием ферментов. Энергия используется клетками при синтезе разнообразных веществ, при выработке тепла, нужного для поддержания температуры тела, при движении и других проявлениях жизнедеятельности.АТФ синтезируется в митохондриях всех клеток, всех организмов и представляет собой универсальный источник энергии. Поэтому митохондрии образно называются силовыми или энергетическими станциями клетки; они обязательный органоид каждой растительной и животной клетки.Пластиды. Пластиды – это органоиды растительных клеток, и наличие пластид отличает клетки растений от клеток животных. Пластиды располагаются в цитоплазме. Различается три основных типа пластид: 1) зеленые – хлоропласты; 2) окрашенные в красный, оранжевый и другие цвета – хромопласты и 3) бесцветные – лейкопласты.Хлоропласты находятся в клетках листьев и других зеленых частях растений. Характерный для хлоропластов зеленый цвет зависит от особого находящегося в них зеленого пигмента хлорофилла. Благодаря хлорофиллу зеленые растения способны использовать световую энергию Солнца и за счет солнечной энергии синтезировать органические вещества из неорганических. Процесс созидания органических веществ из неорганических носит название фотосинтеза. Он происходит только в хлоропластах.Хромопласты окрашивают венчики цветков, плоды, овощи и листья в разные цвета: от желтого и оранжевого до различных оттенков красного цвета.Лейкопласты содержатся в клетках бесцветных частей растений: в стеблях, корнях, клубнях. Все эти типы пластид тесно связаны друг с другом возможностью взаимного перехода. Так, при созревании плодов или при изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут свободно превращаться в хлоропласты, например при позеленении клубней картофеля.Все три типа пластид хорошо видны под световым микроскопом, так как размеры их обычно равны нескольким микрометрам. Например, хлоропласты могут быть 4 – 6 мкм и больше.Лизосомы. Лизосомы – небольшие округлые тельца, располагающиеся во всех частях клетки. Диаметр одной лизосомы около 1 мкм. От цитоплазмы лизосомы отграничены плотной мембраной. Внутри них сконцентрированы ферменты, которые способны расщеплять все пищевые вещества, поступающие в клетку. Расщепление пищевых веществ с помощью ферментов называется лизисом, откуда и происходит название самого органоида – лизосома. В одной клетке лизосом может быть много, например несколько десятков, и совокупность лизосом можно образно назвать пищеварительной системой клетки. Лизосомы обнаружены во многих клетках животных, и в последнее время они найдены также и в клетках растений.Эндоплазматическая сеть. Этот органоид был открыт только при электронно-микроскопическом исследовании клеток.
Список литературы
"СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Биология. Общие закономерности. 9 кл.: С.Г.Мамонтов, В.Б.Захаров, Н.И.Сонин. – 5-е изд., стереотип. – М.: Дрофа, 2004.
2.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. – М.: АСТ: Астрель; Владимир; ВКТ, 2009
3.Вермель Е.М. Основные этапы в развитии учения о клетке. - М.: Учпедгиз. Наркомпроса РСФСР, 1940. - 148 с
4.Володин, Б. Г. И тогда возникла жизнь: / Б. Г. Володин. - 2-е изд., доп. - М.: Знание, 1985. - 224 с.:
5.Кацнельсон З. С. «Клеточная теория в её историческом развитии». — Л., 1963
6.Либберт Э. Общая биология. М., 1978 Льоцци М. История физики. М., 2001.
7.Ченцов Ю.С. Общая цитология, 3-е изд. М., 1995 Грин Н., Стаут У., Тейлор Д. Биология, т. 1. М., 1996
8.
"
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.01884